In storing and transmitting epigenetic information, organisms must balance the need to maintain information about past conditions with the capacity to respond to information in their current and future environments. Some of this information is encoded by DNA methylation, which can be transmitted with variable fidelity from parent to daughter strand. High fidelity confers strong pattern matching between the strands of individual DNA molecules and thus pattern stability over rounds of DNA replication; lower fidelity confers reduced pattern matching, and thus greater flexibility.
View Article and Find Full Text PDFGenes Genet Syst
March 2014
Asian and non-Asian populations have been reported to differ substantially in the distribution of fragile X alleles into the normal (< 55 CGG repeats), premutation (55-199 CGG repeats), and full-mutation (> 199 CGG repeats) size classes. Our statistical analyses of data from published general-population studies confirm that Asian populations have markedly lower frequencies of premutation alleles, reminiscent of earlier findings for expanded alleles at the Huntington's Disease locus. To examine historical and contemporary factors that may have shaped and now sustain allele-frequency differences at the fragile X locus, we develop a population-genetic/epigenetic model, and apply it to these published data.
View Article and Find Full Text PDFDNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby influencing each cell's epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1, DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate specificity and processivity.
View Article and Find Full Text PDFVariability among individuals in the severity of fragile X syndrome (FXS) is influenced by epigenetic methylation mosaicism, which may also be common in other complex disorders. The epigenetic signal of dense promoter DNA methylation is usually associated with gene silencing, as was initially reported for FMR1 alleles in individuals with FXS. A paradox arose when significant levels of FMR1 mRNA were reported for some males with FXS who had been reported to have predominately methylated alleles.
View Article and Find Full Text PDFWe develop Bayesian inference methods for a recently-emerging type of epigenetic data to study the transmission fidelity of DNA methylation patterns over cell divisions. The data consist of parent-daughter double-stranded DNA methylation patterns with each pattern coming from a single cell and represented as an unordered pair of binary strings. The data are technically difficult and time-consuming to collect, putting a premium on an efficient inference method.
View Article and Find Full Text PDFBisulfite treatment can be used to ascertain the methylation states of individual cytosines in DNA. Ideally, bisulfite treatment deaminates unmethylated cytosines to uracils, and leaves 5-methylcytosines unchanged. Two types of bisulfite-conversion error occur: inappropriate conversion of 5-methylcytosine to thymine, and failure to convert unmethylated cytosine to uracil.
View Article and Find Full Text PDFPolymerase chain reaction (PCR) has become the mainstay of DNA sequence analysis. Yet there is always uncertainty concerning the source of the template DNA that gave rise to a particular PCR product. The risks of contamination, biased amplification, and product redundancy are especially high when limited amounts of template DNA are used.
View Article and Find Full Text PDFCytosine methylation is an epigenetic mechanism in eukaryotes that is often associated with stable transcriptional silencing, such as in X-chromosome inactivation and genomic imprinting. Aberrant methylation patterns occur in several inherited human diseases and in many cancers. To understand how methylated and unmethylated states of cytosine residues are transmitted during DNA replication, we develop a population-epigenetic model of DNA methylation dynamics.
View Article and Find Full Text PDFDNA methylation within the promoter region of human LINE1 (L1) transposable elements is important for maintaining transcriptional inactivation and for inhibiting L1 transposition. Determining methylation patterns on the complementary strands of repeated sequences is difficult using standard bisulfite methylation analysis. Evolutionary changes in each repeat and the variations between cells or alleles of the same repeat lead to a heterogeneous population of sequences.
View Article and Find Full Text PDFPCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular 'batch-stamps' that effectively label each genomic template with a sample ID and analysis date.
View Article and Find Full Text PDFEpigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals.
View Article and Find Full Text PDF