Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria.
View Article and Find Full Text PDFUnlabelled: is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene () encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers.
View Article and Find Full Text PDFSensors that can quickly measure the lipase activity from biological samples are useful in enzyme production and medical diagnostics. However, current lipase sensors have limitations such as requiring fluorescent labels, pH control of buffer vehicles, or lengthy assay preparation. We introduce a sparsely tethered triglyceride substrate anchored off of a gold electrode for the impedance sensing of real-time lipase activity.
View Article and Find Full Text PDFCardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear.
View Article and Find Full Text PDFThe Na, K-ATPase is an integral membrane protein which uses the energy of ATP hydrolysis to pump Na and K ions across the plasma membrane of all animal cells. It plays crucial roles in numerous physiological processes, such as cell volume regulation, nutrient reabsorption in the kidneys, nerve impulse transmission, and muscle contraction. Recent data suggest that it is regulated via an electrostatic switch mechanism involving the interaction of its lysine-rich N-terminus with the cytoplasmic surface of its surrounding lipid membrane, which can be modulated through the regulatory phosphorylation of the conserved serine and tyrosine residues on the protein's N-terminal tail.
View Article and Find Full Text PDFAryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient.
View Article and Find Full Text PDFTargeting the cancer cell mitochondrion is a promising approach for developing novel anticancer agents. The experimental anticancer agent ,'-bis(3,5-dichlorophenyl)urea () induces apoptotic cell death in several cancer cell lines by uncoupling mitochondrial oxidative phosphorylation (OxPhos) using a protein-free mechanism. However, the precise mechanism by which depolarizes mitochondria is unclear because lacks an acidic functional group typically found in protein-independent uncouplers.
View Article and Find Full Text PDFContact lens wearers are at an increased risk of developing Pseudomonas-associated corneal keratitis, which can lead to a host of serious ocular complications. Despite the use of topical antibiotics, ocular infections remain a major clinical problem, and a strategy to avoid Pseudomonas-associated microbial keratitis is urgently required. The hybrid peptide VR18 (VARGWGRKCPLFGKNKSR) was designed to have enhanced antimicrobial properties in the fight against Pseudomonas-induced microbial keratitis, including contact lens-related keratitis.
View Article and Find Full Text PDFThere is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics.
View Article and Find Full Text PDFConnecting molecular interactions to emergent properties is a goal of physical chemistry, self-assembly, and soft matter science. We show that for fatty acid bilayers, vesicle rupture tension, and permeability to water and ions are coupled to pH alterations to lipid packing. A change in pH of one, for example, can halve the rupture tension of oleic acid membranes, an effect that is comparable to increasing lipid unsaturation in phospholipid systems.
View Article and Find Full Text PDFOn behalf of the Australian Society for Biophysics (ASB) and the Editors of this Special Issue, I would like to express our appreciation to Editor-in-Chief, Damien Hall, for arranging the publication of this Special Issue. The ASB is about five times smaller than our sister the Biophysical Society for Japan (BSJ) and tenfold smaller than the US Biophysical Society (USBS), but our meetings are notable because of the encouragement the Society gives to emerging biophysicists. It can be a terrifying experience for a PhD student to have to face a roomful of professors and senior academics, but invariably they appreciate the experience.
View Article and Find Full Text PDFSwept frequency electrical impedance spectroscopy (EIS) can be used in conjunction with tethered bilayer lipid membranes to monitor the membrane permeability of ions in real-time (Deplazes et al. J Phys Chem Lett 11:6353-6358, 2020). Conductance readings, as determined by EIS, are a measure of the ability of ions to be transported across membranes.
View Article and Find Full Text PDFBecause they are firmly anchored to a noble metal substrate, tethered bilayer lipid membranes (tBLMs) are considerably more robust than supported lipid bilayers such as black lipid membranes (BLMs) (Cranfield et al. Biophys J 106:182-189, 2014). The challenge to rapidly create asymmetrical tBLMs that include a lipopolysaccharide outer leaflet for bacterial model membrane research can be overcome by the use of a Langmuir-Schaefer deposition protocol.
View Article and Find Full Text PDFMonitoring the changes in membrane conductance using electrical impedance spectroscopy is the platform of membrane-based biosensors in order to detect a specific target molecule. These biosensors represent the amalgamation of an electrical conductor such as gold and a chemically tethered bilayer lipid membrane with specific incorporated ion channels such as gramicidin-A that is further functionalized with detector molecules of interest.
View Article and Find Full Text PDFCalcium ions (Ca) play a fundamental role in membrane-associated physiological processes. Ca can also significantly modulate the physicochemical properties of phospholipid bilayers, but whether this occurs at physiologically relevant concentrations is difficult to determine because of the uncertainty in the reported affinity of Ca for phospholipid bilayers. In this article, we determine the apparent affinity of Ca for zwitterionic phospholipid bilayers using tethered bilayer lipid membranes (tBLMs) used in conjunction with swept-frequency electrical impedance spectroscopy (EIS).
View Article and Find Full Text PDFThis Commentary describes a call for submissions for the upcoming Special Issue focused on the research topics presented at the Australian Society of Biophysics (ASB) in 2020 and 2021. Submissions from past and present ASB members who could not attend these meetings are also welcome as contributions to this special issue.
View Article and Find Full Text PDFRespiring mitochondria establish a proton gradient across the mitochondrial inner membrane (MIM) that is used to generate ATP. Protein-independent mitochondrial uncouplers collapse the proton gradient and disrupt ATP production by shuttling protons back across the MIM in a protonophoric cycle. Continued cycling relies on the formation of MIM-permeable anionic species that can return to the intermembrane space after deprotonation in the mitochondrial matrix.
View Article and Find Full Text PDFThe analysis of electronic cigarrete (E-cigarette) fluids by high performance liquid chromatography or gas chromatography (GC) coupled to mass spectrometry (MS), GC hyphenated to flame-ionisation detection, or nuclear magnetic resonance spectroscopy poses many challenges due to the complex matrix and extremely high number of compounds present. In order to overcome these challenges, this study focused on the detection of the multiple complex compounds classes produced by the pyrolysis of E-cigarette liquids using comprehensive two dimensional gas chromatography (GCxGC) coupled to time of flight (TOF)-MS. Gas samples were prepared by heating E-liquids inside aluminium tins for 5 min.
View Article and Find Full Text PDFAims: Mitochondrial uncouplers decrease caloric efficiency and have potential therapeutic benefits for the treatment of obesity and related metabolic disorders. Herein we investigate the metabolic and physiologic effects of a recently identified small molecule mitochondrial uncoupler named SHC517 in a mouse model of diet-induced obesity.
Methods: SHC517 was administered as an admixture in food.
Phospholipase-A (PLA) enzymes catalyze the hydrolysis of ester bonds in select glycerophospholipids. Sensors for rapidly measuring the PLA activity in biological samples have relevance in the study of venom compositions and in medical diagnostics for the diagnosis of diseases such as acute pancreatitis. Current PLA sensor technologies are often restricted by the time it takes to prepare an assay, the necessity of using fluorescent labels, or the fact they might require strict pH control of the buffer vehicles used.
View Article and Find Full Text PDFHere we report a protocol to investigate the heat transfer between irradiated gold nanoparticles (GNPs) and bilayer lipid membranes by electrochemistry using tethered bilayer lipid membranes (tBLMs) assembled on gold electrodes. Irradiated modified GNPs, such as streptavidin-conjugated GNPs, are embedded in tBLMs containing target molecules, such as biotin. By using this approach, the heat transfer processes between irradiated GNPs and model bilayer lipid membrane with entities of interest are mediated by a horizontally focused laser beam.
View Article and Find Full Text PDFStatins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades.
View Article and Find Full Text PDFThere has been an increasing interest in the development of antimicrobial peptides (AMPs) and their synthetic mimics as a novel class of antibiotics to overcome the rapid emergence of antibiotic resistance. Recently, phenylglyoxamide-based small molecular AMP mimics have been identified as potential leads to treat bacterial infections. In this study, a new series of biphenylglyoxamide-based small molecular AMP mimics were synthesised from the ring-opening reaction of -sulfonylisatin bearing a biphenyl backbone with a diamine, followed by the conversion into tertiary ammonium chloride, quaternary ammonium iodide and guanidinium hydrochloride salts.
View Article and Find Full Text PDFGALA is a 30-residue amphipathic peptide that self-assembles into multimeric transmembrane pores in a pH-dependent fashion. In this study, we characterize the size, multimeric structure, and cation selectivity of GALA pores in planar phospholipid bilayers using electrical impedance spectroscopy and molecular dynamics simulations. We demonstrate that in planar bilayers GALA pores are likely formed by six peptide monomers rather than eight to 12 monomers as previously reported for lipid vesicles.
View Article and Find Full Text PDF