While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment. Radiotherapy has the potential to prime the tumor-immune microenvironment for immunotherapy. However, predicting response is difficult due to tumor heterogeneity across patients, which necessitates personalized medicine strategies that incorporate tumor tracking into the therapeutic approach.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2024
Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy.
View Article and Find Full Text PDFObjective: Transcranial focused ultrasound (tFUS) is being explored for neuroscience research and clinical applications due to its ability to affect precise brain regions noninvasively. The ability to target specific brain regions and localize the beam during these procedures is important for these applications to avoid damage and minimize off-target effects. Here, we present a method to combine optical tracking with magnetic resonance (MR) acoustic radiation force imaging to achieve targeting and localizing of the tFUS beam.
View Article and Find Full Text PDFIEEE Open J Ultrason Ferroelectr Freq Control
September 2023
Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an skull cap.
View Article and Find Full Text PDFObjective: Ultrasound is being researched as a method to modulate the brain. Studies of the interaction of sound with neurons support the hypothesis that mechanosensitive ion channels play an important role in ultrasound neuromodulation. The response of cells other than neurons (e.
View Article and Find Full Text PDFCritical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e.
View Article and Find Full Text PDFThe use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique.
View Article and Find Full Text PDFPurpose: Transcranial focused ultrasound (tFUS) is a therapeutic ultrasound method that focuses sound through the skull to a small region noninvasively and often under magnetic resonance imaging (MRI) guidance. CT imaging is used to estimate the acoustic properties that vary between individual skulls to enable effective focusing during tFUS procedures, exposing patients to potentially harmful radiation. A method to estimate acoustic parameters in the skull without the need for CT is desirable.
View Article and Find Full Text PDFBackground: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex.
Objective: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks.
Background: While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment. Radiotherapy has the potential to prime the tumor-immune microenvironment for immunotherapy. However, predicting response is difficult due to tumor heterogeneity across patients, which necessitates personalized medicine strategies that incorporate tumor tracking into the therapeutic approach.
View Article and Find Full Text PDFCritical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
May 2023
[[gabstract]][] Focused ultrasound (FUS) can temporarily open the blood-brain barrier (BBB) and increase the delivery of chemotherapeutics, viral vectors, and other agents to the brain parenchyma. To limit FUS BBB opening to a single brain region, the transcranial acoustic focus of the ultrasound transducer must not be larger than the region targeted. In this work, we design and characterize a therapeutic array optimized for BBB opening at the frontal eye field (FEF) in macaques.
View Article and Find Full Text PDFFocused ultrasound blood-brain barrier (BBB) opening is a promising tool for targeted delivery of therapeutic agents into the brain. The volume of opening determines the extent of therapeutic administration and sets a lower bound on the size of targets which can be selectively treated. We tested a custom 1 MHz array transducer optimized for cortical regions in the macaque brain with the goal of achieving small volume openings.
View Article and Find Full Text PDFTranscranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone.
View Article and Find Full Text PDFWe have previously shown that focused ultrasound (FUS) pulses in low pressure range exerted bidirectional and brain state-dependent neuromodulation in the nonhuman primate somatosensory cortices by fMRI. Here we aim to gain insights about the proposed neuron selective modulation of FUS and probe feedforward versus feedback interactions by simultaneously quantifying the stimulus (FUS pressures: 925, 425, 250 kPa) and response (% BOLD fMRI changes) function at the targeted area 3a/3b and off-target cortical areas at 7T. In resting-state, lowered intensities of FUS resulted in decreased fMRI signal changes at the target area 3a/3b and off-target area 1/2, S2, MCC, insula and auditory cortex, and no signal difference in thalamic VPL and MD nuclei.
View Article and Find Full Text PDFAnterior cingulate cortex (ACC) and striatum (STR) contain neurons encoding not only the expected values of actions, but also the value of stimulus features irrespective of actions. Values about stimulus features in ACC or STR might contribute to adaptive behavior by guiding fixational information sampling and biasing choices toward relevant objects, but they might also have indirect motivational functions by enabling subjects to estimate the value of putting effort into choosing objects. Here, we tested these possibilities by modulating neuronal activity in ACC and STR of nonhuman primates using transcranial ultrasound stimulation while subjects learned the relevance of objects in situations with varying motivational and cognitive demands.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) prevents harmful toxins from entering brain but can also inhibit therapeutic molecules designed to treat neurodegenerative diseases. Focused ultrasound (FUS) combined with microbubbles can enhance permeability of BBB and is often performed under MRI guidance. We present an all-ultrasound system capable of targeting desired regions to open BBB with millimeter-scale accuracy in two dimensions based on Doppler images.
View Article and Find Full Text PDFPurpose: To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects.
Methods: MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount.
Localizing the focus during transcranial focused ultrasound procedures is important to ensure accurate targeting of specific brain regions and interpretation of results. Magnetic resonance acoustic radiation force imaging uses the displacement induced by the ultrasound focus in the brain to localize the beam, but the high pressure required to displace brain tissue may cause damage or confounds during subsequent neuromodulatory experiments. Here, reduced apertures were applied to a phased array transducer to generate comparable displacement to the full aperture but with 20% lower free field pressure.
View Article and Find Full Text PDFPhase-change contrast agents (PCCAs) consisting of lipid-encapsulated low-boiling-point perfluorocarbons can be used in conjunction with ultrasound for diagnostic and therapeutic applications. One benefit of PCCAs is site-specific activation, whereby the liquid core is acoustically vaporized into a bubble detectable via ultrasound imaging. For further evaluation of PCCAs in a variety of applications, it is useful to disperse these nanodroplets into an acoustically compatible stationary matrix.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2022
Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design.
View Article and Find Full Text PDFTranscranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions.
View Article and Find Full Text PDFNeuromodulation with focused ultrasound (FUS) is being widely explored as a non-invasive tool to stimulate focal brain regions because of its superior spatial resolution and coverage compared with other neuromodulation methods. The precise effects of FUS stimulation on specific regions of the brain are not yet fully understood. Here, we characterized the behavioral effects of FUS stimulation directly applied through a craniotomy over the macaque frontal eye field (FEF).
View Article and Find Full Text PDFUltrasound is gaining traction as a neuromodulation method due to its ability to remotely and non-invasively modulate neuronal activity with millimeter precision. However, there is little consensus about optimal ultrasound parameters required to elicit neuromodulation and how specific parameters drive mechanisms that underlie ultrasound neuromodulation. We address these questions in this work by performing a study to determine effective ultrasound parameters in a transgenic mouse brain slice model that enables calcium imaging as a quantitative readout of neuronal activity for ultrasound neuromodulation.
View Article and Find Full Text PDF