Publications by authors named "Charles C Kemp"

Assistive robots have the potential to support independence, enhance safety, and lower healthcare costs for older adults, as well as alleviate the demands of their care partners. However, ensuring that these robots will effectively and reliably address end-user needs in the long term requires user-specific design factors to be considered during the robot development process. To identify these design factors, we embedded Stretch, a mobile manipulator created by Hello Robot Inc.

View Article and Find Full Text PDF

Mobile manipulators for indoor human environments can serve as versatile devices that perform a variety of tasks, yet adoption of this technology has been limited. Reducing size, weight, and cost could facilitate adoption, but risks restricting capabilities. We present a novel design that reduces size, weight, and cost, while supporting a variety of tasks.

View Article and Find Full Text PDF

Contact pressure between the human body and its surroundings has important implications. For example, it plays a role in comfort, safety, posture, and health. We present a method that infers contact pressure between a human body and a mattress from a depth image.

View Article and Find Full Text PDF

Humans and robots can recognize materials with distinct thermal effusivities by making physical contact and observing temperatures during heat transfer. This works well with room temperature materials, yet research has shown that contact with distinct materials can result in similar temperatures and confusion when one material is heated or cooled. To thoroughly investigate this form of ambiguity, we designed a psychophysical experiment in which a participant discriminates between two materials given initial conditions that result in similar temperatures (i.

View Article and Find Full Text PDF

Various situations, such as injuries or long-term disabilities, can result in people receiving physical assistance while in bed. We present a robotic system for bedside assistance that consists of a robotic bed and a mobile manipulator (i.e.

View Article and Find Full Text PDF

Robotic assistance presents an opportunity to benefit the lives of many people with physical disabilities, yet accurately sensing the human body and tracking human motion remain difficult for robots. We present a multidimensional capacitive sensing technique that estimates the local pose of a human limb in real time. A key benefit of this sensing method is that it can sense the limb through opaque materials, including fabrics and wet cloth.

View Article and Find Full Text PDF

By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms.

View Article and Find Full Text PDF

To successfully deploy a robot into a healthcare setting, it must be accepted by the end users. This study explored healthcare providers' perceptions of a mobile manipulator class personal robot assisting with caregiving tasks for older adult patients. Participants were 14 healthcare providers with an average of 12 years of continuous work experience with older patients.

View Article and Find Full Text PDF

Partner dance has been shown to be beneficial for the health of older adults. Robots could potentially facilitate healthy aging by engaging older adults in partner dance-based exercise. However, partner dance involves physical contact between the dancers, and older adults would need to be accepting of partner dancing with a robot.

View Article and Find Full Text PDF

Introduction: Many older adults wish to age-in-place. Robot assistance at home may be beneficial for older adults who are experiencing limitations in performing home activities. In this study we investigate older Americans' robot acceptance before and after exposure to a domestic mobile manipulator, with an emphasis on understanding trialability (i.

View Article and Find Full Text PDF

Background: Physical interactions between two people are ubiquitous in our daily lives, and an integral part of many forms of rehabilitation. However, few studies have investigated forces arising from physical interactions between humans during a cooperative motor task, particularly during overground movements. As such, the direction and magnitude of interaction forces between two human partners, how those forces are used to communicate movement goals, and whether they change with motor experience remains unknown.

View Article and Find Full Text PDF

Our long-term goal is to enable a robot to engage in partner dance for use in rehabilitation therapy, assessment, diagnosis, and scientific investigations of two-person whole-body motor coordination. Partner dance has been shown to improve balance and gait in people with Parkinson's disease and in older adults, which motivates our work. During partner dance, dance couples rely heavily on haptic interaction to convey motor intent such as speed and direction.

View Article and Find Full Text PDF

The population of older adults in America is expected to reach an unprecedented level in the near future. Some of them have difficulties with performing daily tasks and caregivers may not be able to match pace with the increasing need for assistance. Robots, especially mobile manipulators, have the potential for assisting older adults with daily tasks enabling them to live independently in their homes.

View Article and Find Full Text PDF

As the older adult population grows and becomes more diverse, so will their needs and preferences for living environments. Many adults over 65 years of age require some assistance [1, 2]; yet it is important for their feelings of well-being that the assistance not restrict their autonomy [3]. Not only is autonomy correlated with quality of life [4], autonomy enhancement may improve functionality [2, 5].

View Article and Find Full Text PDF

Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.

View Article and Find Full Text PDF

Robots have potential to provide assistance to healthcare providers in daily caregiving tasks. The healthcare providers' acceptance of assistive robots will mediate the success or failure of implementation of robotic systems in care settings. It is essential to understand why and how providers would accept implementation of a robot in their daily work routines.

View Article and Find Full Text PDF

Successful management of medications is critical to maintaining healthy and independent living for older adults. However, medication non-adherence is a common problem with a high risk for severe consequences [5], which can jeopardize older adults' chances to age in place [1]. Well-designed robots assisting with medication management tasks could support older adults' independence.

View Article and Find Full Text PDF

Home robots have the potential to assist older adults in maintaining their independence. However, robots deployed in older adults' homes will be required to interact with untrained, novice users. The way untrained users, such as older adults, provide commands or control the robot (i.

View Article and Find Full Text PDF

Many older adults value their independence and prefer to age in place. Robots can be designed to assist older people with performing everyday living tasks and maintaining their independence at home. Yet, there is a scarcity of knowledge regarding older adults' attitudes toward robots and their preferences for robot assistance.

View Article and Find Full Text PDF

Many older adults wish to remain in their own homes as they age [16]. However, challenges in performing home upkeep tasks threaten an older adult's ability to age in place. Even healthy independently living older adults experience challenges in maintaining their home [13].

View Article and Find Full Text PDF

People with physical disabilities have ranked object retrieval as a high-priority task for assistive robots. We have developed Dusty, a teleoperated mobile manipulator that fetches objects from the floor and delivers them to users at a comfortable height. In this paper, we first demonstrate the robot's high success rate (98.

View Article and Find Full Text PDF

As the older adult population grows and becomes more diverse, so will their needs and preferences for living environments. Many adults over 65 years of age require assistance in their living environment (Administration on Aging, 2009), however it is important for their feelings of well-being that the assistance does not restrict their autonomy (e.g.

View Article and Find Full Text PDF