Publications by authors named "Charles C Abrams"

African swine fever virus (ASFV) encodes multiple copies of MGF360 and MGF530/505 gene families. These genes have been implicated in the modulation of the type I interferon (IFN) response. We investigated the effect of modulating the IFN response on virus attenuation and induction of protective immunity by deleting genes MGF360 (MGF360-10L, 11L, 12L, 13L, 14L) and MGF530/505 (MGF530/505-1R, 2R and 3R) and interrupting genes (MGF360-9L and MGF530/505-4R) in the genome of the virulent ASFV isolate Benin 97/1.

View Article and Find Full Text PDF

African swine fever virus (ASFV) causes an acute haemorrhagic disease of domestic pigs against which there is no effective vaccine. The attenuated ASFV strain OUR T88/3 has been shown previously to protect vaccinated pigs against challenge with some virulent strains including OUR T88/1. Two genes, DP71L and DP96R were deleted from the OUR T88/3 genome to create recombinant virus OUR T88/3ΔDP2.

View Article and Find Full Text PDF

African swine fever virus (ASFV) is the only member of the Asfarviridae, a large DNA virus family which replicates predominantly in the cytoplasm. Most isolates cause a fatal haemorrhagic disease in domestic pigs, although some low virulence isolates cause little or no mortality. The modulation of chemokine responses following infection of porcine macrophages with low and high virulence isolates was studied to indicate how this may be involved in the induction of pathogenesis and of effective immune responses.

View Article and Find Full Text PDF

A method has been established to sequentially delete combinations of genes from the ASFV genome to test the effect on virus replication and host responses to infection. Initially the ASFV genes MGF505 2R and MGF505 3R and a truncated MGF360 9L gene were deleted from the genome of the tissue-culture adapted ASFV strain BA71V and replaced with bacteriophage loxP sequences flanking the beta-glucuronidase (GUS) marker gene to create recombinant virus VΔMGF-GUS. Subsequently the GUS gene was removed by site-specific recombination between the two loxP sites involving expression of the bacteriophage Cre recombinase enzyme to create recombinant virus VΔMGFΔGUS.

View Article and Find Full Text PDF

The African swine fever virus A238L protein inhibits calcineurin phosphatase activity and activation of NF-kappaB and p300 co-activator. An 82 amino acid domain containing residues 157 to 238 at the C-terminus of A238L was expressed in E. coli and purified.

View Article and Find Full Text PDF

This study examined nuclear and cytoplasmic shuttling of the African swine fever virus (ASFV) A238L protein, which is an inhibitor of NF-kappaB and of calcineurin phosphatase. The results showed that the protein was present in both the nucleus and the cytoplasm in ASFV-infected cells and that the higher molecular mass 32 kDa form of the A238L protein was the predominant nuclear form, which accumulated later in infection. In contrast, both the 28 and 32 kDa forms of the A238L protein were present in the cytoplasm.

View Article and Find Full Text PDF

We used a porcine microarray containing 2,880 cDNAs to investigate the response of macrophages to infection by a virulent African swine fever virus (ASFV) isolate, Malawi LIL20/1. One hundred twenty-five targets were found to be significantly altered at either or both 4 h and 16 h postinfection compared with targets after mock infection. These targets were assigned into three groups according to their temporal expression profiles.

View Article and Find Full Text PDF

African swine fever virus (ASFV) can cause an acutely fatal haemorrhagic fever in domestic pigs although in its natural hosts, warthogs, bushpigs and the soft tick vector, Ornithodoros moubata, ASFV causes inapparent persistent infections. The virus is a large, cytoplasmic, double-stranded DNA virus which has a tropism for macrophages. As it is the only member of the Asfarviridae family, ASFV encodes many novel genes not encoded by other virus families.

View Article and Find Full Text PDF