Publications by authors named "Charles Broadbent"

Unlabelled: Spatial transcripome (ST) profiling can reveal cells' structural organizations and functional roles in tissues. However, deciphering the spatial context of gene expressions in ST data is a challenge-the high-order structure hiding in whole transcriptome space over 2D/3D spatial coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpretation. This paper presents a new method GraphTucker-graph-regularized Tucker tensor decomposition for learning high-order factorization in ST data.

View Article and Find Full Text PDF

Spatially-resolved RNA profiling has now been widely used to understand cells' structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data.

View Article and Find Full Text PDF