Mitochondrial Ca uptake, mediated by the mitochondrial Ca uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs.
View Article and Find Full Text PDFThe mitochondrial calcium uniporter is a Ca channel that regulates intracellular Ca signaling, oxidative phosphorylation, and apoptosis. It contains the pore-forming MCU protein, which possesses a DIME sequence thought to form a Ca selectivity filter, and also regulatory EMRE, MICU1, and MICU2 subunits. To properly carry out physiological functions, the uniporter must stay closed in resting conditions, becoming open only when stimulated by intracellular Ca signals.
View Article and Find Full Text PDFThe physiological importance of mitochondrial calcium uptake, observed in processes such as ATP production, intracellular calcium signaling, and apoptosis, makes desirable a simple, straightforward way of investigating this event with unambiguous results. The following protocol uses a calcium-sensitive, membrane-impermeable fluorophore to monitor extra-mitochondrial calcium levels in the presence of permeabilized mammalian cells harboring activated mitochondria.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
The mitochondrial calcium uniporter is a Ca-activated Ca channel complex mediating mitochondrial Ca uptake, a process crucial for Ca signaling, bioenergetics, and cell death. The uniporter is composed of the pore-forming MCU protein, the gatekeeping MICU1 and MICU2 subunits, and EMRE, a single-pass membrane protein that links MCU and MICU1 together. As a bridging subunit required for channel function, EMRE could paradoxically inhibit uniporter complex formation if expressed in excess.
View Article and Find Full Text PDFMitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation.
View Article and Find Full Text PDF