Publications by authors named "Charles A Hoeffer"

Polyserine domains mediate the association of nuclear RNA binding proteins with cytoplasmic tau aggregates that occurs across tauopathy models and patient samples. In cell lines, polyserine peptides co-localize with and promote formation of tau aggregates suggesting the cytoplasmic mislocalization of polyserine-containing proteins might contribute to human disease. Moreover, polyserine can be produced by repeat associated non-AUG translation in CAG repeat expansion diseases.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption.

View Article and Find Full Text PDF

A better understanding of nicotine neurobiology is needed to reduce or prevent chronic addiction, ameliorate the detrimental effects of nicotine withdrawal, and increase successful cessation of use. Nicotine binds and activates two astrocyte-expressed nicotinic acetylcholine receptors (nAChRs), α4β2 and α7. We recently found that ( or ) expression is restricted to astrocytes in mice and humans.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption.

View Article and Find Full Text PDF

Open-field activity is a commonly used measure of anxiety-related behavior in rodents. The inbred High and Low Activity strains of mice, selected for extreme differences in open-field activity, have been used as a genetic model of anxiety-related behaviors. These selected strains have been thoroughly studied through extensive behavioral testing, quantitative trait locus (QTL) mapping, whole-genome sequencing, and RNA sequencing, to uncover phenotypic and genotypic differences related to anxiety-related behavior.

View Article and Find Full Text PDF

Anxiety disorders are common and can be debilitating, with effective treatments remaining hampered by an incomplete understanding of the underlying genetic etiology. Improvements have been made in understanding the genetic influences on mouse behavioral models of anxiety, yet it is unclear the extent to which genes identified in these experimental systems contribute to genetic variation in human anxiety phenotypes. Leveraging new and existing large-scale human genome-wide association studies, we tested whether sets of genes previously identified in mouse anxiety-like behavior studies contribute to a range of human anxiety disorders.

View Article and Find Full Text PDF

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here, we introduce a new approach using predicted gene expression to perform exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce the computational challenge and improve interpretability and statistical power.

View Article and Find Full Text PDF

Transactive response DNA binding protein 43 kilodaltons (TDP-43) is a DNA and RNA binding protein associated with severe neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), primarily affecting motor neurons in the brain and spinal cord. Partial knockdown of TDP-43 expression in a mouse model (the amiR-TDP-43 mice) leads to progressive, age-related motor dysfunction, as observed in ALS patients. Work in Caenorhabditis elegans suggests that TDP-43 dysfunction can lead to deficits in chromatin processing and double-stranded RNA (dsRNA) accumulation, potentially activating the innate immune system and promoting neuroinflammation.

View Article and Find Full Text PDF
Article Synopsis
  • RCAN1 is overexpressed in Down syndrome (DS), Alzheimer's disease (AD), and normal aging, and it may play a role in memory deficits and neurodegeneration related to these conditions.
  • Abnormal diurnal patterns and circadian disruptions are common in DS, AD, and aging, but the impact of RCAN1 on these rhythms has not been previously studied.
  • The study found that proper levels of RCAN1 are essential for maintaining normal circadian rhythms and showed that both RCAN1 deficiency and overexpression can lead to altered rest-activity patterns and activity rhythm disruptions similar to those seen in DS, AD, and aging.
View Article and Find Full Text PDF

Genetic correlations suggest that the genetic relationship of alcohol use with internalizing psychopathology depends on the measure of alcohol use. Problematic alcohol use (PAU) is positively genetically correlated with internalizing psychopathology, whereas alcohol consumption ranges from not significantly correlated to moderately negatively correlated with internalizing psychopathology. To explore these different genetic relationships of internalizing psychopathology with alcohol use, we performed a multivariate genome-wide association study of four correlated factors (internalizing psychopathology, PAU, quantity of alcohol consumption, and frequency of alcohol consumption) and then assessed genome-wide and local genetic covariance between these factors.

View Article and Find Full Text PDF

Protein kinase B (PKB/AKT) is a central kinase involved in many neurobiological processes. AKT is expressed in the brain as three isoforms, AKT1, AKT2, and AKT3. Previous studies suggest isoform-specific roles in neural function, but very few studies have examined AKT isoform expression at the cellular level.

View Article and Find Full Text PDF

Introduction: Smoking is a leading cause of death, and genetic variation contributes to smoking behaviors. Identifying genes and sets of genes that contribute to risk for addiction is necessary to prioritize targets for functional characterization and for personalized medicine.

Methods: We performed a gene set-based association and heritable enrichment study of two addiction-related gene sets, those on the Smokescreen Genotyping Array and the nicotinic acetylcholine receptors, using the largest available GWAS summary statistics.

View Article and Find Full Text PDF

AKT is a kinase regulating numerous cellular processes in the brain, and mutations in are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) underlies higher cognitive processes that are modulated by nicotinic acetylcholine receptor (nAChR) activation by cholinergic inputs. PFC spontaneous default activity is altered in neuropsychiatric disorders, including schizophrenia-a disorder that can be accompanied by heavy smoking. Recently, genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) in the human CHRNA5 gene, encoding the α5 nAChR subunit, that increase the risks for both smoking and schizophrenia.

View Article and Find Full Text PDF

Viral infection during pregnancy has been correlated with increased frequency of autism spectrum disorder (ASD) in offspring. This observation has been modeled in rodents subjected to maternal immune activation (MIA). The immune cell populations critical in the MIA model have not been identified.

View Article and Find Full Text PDF

Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845.

View Article and Find Full Text PDF

The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 α (eIF2α) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the Cre-lox expression system to selectively disrupt PERK expression in the adult mouse forebrain.

View Article and Find Full Text PDF

Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. We showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D₂R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D₂R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP).

View Article and Find Full Text PDF

Background: Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood.

View Article and Find Full Text PDF

Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice.

View Article and Find Full Text PDF

Persistent forms of synaptic plasticity are widely thought to require the synthesis of new proteins. This feature of long-lasting forms of plasticity largely has been demonstrated using inhibitors of general protein synthesis, such as either anisomycin or emetine. However, these drugs, which inhibit elongation, cannot address detailed questions about the regulation of translation initiation, where the majority of translational control occurs.

View Article and Find Full Text PDF

Generation of reactive oxygen species (ROS) causes cellular oxidative damage and has been implicated in the etiology of Alzheimer's disease (AD). In contrast, multiple lines of evidence indicate that ROS can normally modulate long-term potentiation (LTP), a cellular model for memory formation. We recently showed that decreasing the level of superoxide through the overexpression of mitochondrial superoxide dismutase (SOD-2) prevents memory deficits in the Tg2576 mouse model of AD.

View Article and Find Full Text PDF

Silencing of a single gene, FMR1, is linked to a highly prevalent form of mental retardation, characterized by social and cognitive impairments, known as fragile X syndrome (FXS). The FMR1 gene encodes fragile X mental retardation protein (FMRP), which negatively regulates translation. Knockout of Fmr1 in mice results in enhanced long-term depression (LTD) induced by metabotropic glutamate receptor (mGluR) activation.

View Article and Find Full Text PDF

Considerable evidence indicates that the general blockade of protein synthesis prevents both the initial consolidation and the postretrieval reconsolidation of long-term memories. These findings come largely from studies of drugs that block ribosomal function, so as to globally interfere with both cap-dependent and -independent forms of translation. Here we show that intra-amygdala microinfusions of 4EGI-1, a small molecule inhibitor of cap-dependent translation that selectively disrupts the interaction between eukaryotic initiation factors (eIF) 4E and 4G, attenuates fear memory consolidation but not reconsolidation.

View Article and Find Full Text PDF

Background: The mammalian target of rapamycin (mTOR) is an evolutionarily conserved Ser/Thr protein kinase that plays a pivotal role in multiple fundamental biological processes, including synaptic plasticity. We explored the relationship between the mTOR pathway and β-amyloid (Aβ)-induced synaptic dysfunction, which is considered to be critical in the pathogenesis of Alzheimer's disease (AD).

Methodology/principal Findings: We provide evidence that inhibition of mTOR signaling correlates with impairment in synaptic plasticity in hippocampal slices from an AD mouse model and in wild-type slices exposed to exogenous Aβ1-42.

View Article and Find Full Text PDF