With a deformed object of a rigid rod inside, the local dislocations may be tracked relatively easily with respect to the internal rigid rod. We apply this concept on protein folding-unfolding to track the internal structural changes of an unfolded protein in solution. Proposed here is a protein internal coordination based on the major axis X of an ellipsoidal protein and the stable intrinsic transition dipole moment μ of the protein during unfolding.
View Article and Find Full Text PDFSingle-stranded adenine homo-oligonucleotides were investigated in aqueous solution by femtosecond transient absorption spectroscopy in order to study the effect of strand length on the nature and dynamics of excited states formed by UV absorption. Global fitting analysis of bleach recovery signals recorded at a probe wavelength of 250 nm and pH 7 reveals that the same lifetimes of 2.72 and 183 ps reproduce the pronounced biexponential decays observed in all (dA)n oligomers, containing between 2 and 18 residues.
View Article and Find Full Text PDFUltraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments.
View Article and Find Full Text PDFExcited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy.
View Article and Find Full Text PDFEquilibrium unfolding behaviors of cytochrome c and lysozyme induced by the presence of urea (0-10 M) as well as changes in temperature (295-363 K) or pH (1.8-7) are examined via small-angle x-ray scattering and spectroscopic techniques, including circular dichroism and optical absorption. Denaturant and temperature effects are incorporated into the free energy expression for a general multigroup unfolding process.
View Article and Find Full Text PDF