Publications by authors named "Charlene M Mello"

Rapid detection and identification of bacteria is important for human health, biodefense, and food safety. Small arrays of different antimicrobial peptides (AMPs) enable the identification of lipopolysaccharide (LPS) samples from a variety of bacterial species and strains. A model system for examining how peptide presentation affects LPS detection is the sheep myeloid antimicrobial peptide (SMAP-29), which contains a helix-turn-helix motif.

View Article and Find Full Text PDF

The immobilization of antimicrobial peptides (AMPs) to surfaces, enabling their utilization in biosensor and antibacterial/antifouling coating applications, is typically performed using rigid, solid support materials such as glass or gold and may require lengthy, temperamental protocols. Here, we employ a hydrogel immobilization platform to afford facile fabrication and surface functionalization while offering improved biocompatibility for evaluating the influence of linker length, surface density, and AMP conjugation site on retained peptide activity. Rapid, interfacial photo-polymerization using the radical-mediated thiol-ene addition mechanism was used to generate cross-linked, polymeric coatings bearing residual thiol moieties on prefabricated poly(ethylene glycol) (PEG)-based hydrogel supports.

View Article and Find Full Text PDF

Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT.

View Article and Find Full Text PDF

Molecular structures such as conformation and orientation are crucial in determining the activity of peptides immobilized to solid supports. In this study, sum frequency generation (SFG) vibrational spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group.

View Article and Find Full Text PDF

A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.

View Article and Find Full Text PDF

Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to investigate the orientation of N-terminus cysteine-modified cecropin P1 (cCP1) at the polystyrene maleimide (PS-MA)/peptide phosphate buffer solution interface. The cCP1 cysteine group reacts with the maleimide group on the PS-MA surface to chemically immobilize cCP1. Previously, we found that the C-terminus cysteine-modified cecropin P1 (CP1c) molecules exhibit a multiple-orientation distribution at the PS-MA/peptide phosphate buffer solution interface, due to simultaneous physical adsorption and chemical immobilization of CP1c on the PS-MA surface.

View Article and Find Full Text PDF

A small array of antimicrobial peptides comprising three cysteine-terminated natural sequences covalently immobilized to pendant surface maleimide groups are used to bind and successfully discriminate five types of lipopolysaccharide (LPS) molecules. Using surface plasmon resonance, LPSs isolated from four strains of Escherichia coli and one strain of Pseudomonas aeruginosa yield distinct binding profiles to the three immobilized peptides. Linear discriminant analysis generated 100% training set and 80% validation set classification success for the 40 samples evaluated.

View Article and Find Full Text PDF

Electrostatic nanoassemblies were employed to identify bacterial growth conditions. They comprise a cationic conjugated oligoelectrolyte and fluorescein-tagged ssDNA and were optimized with a hybrid, computational neural network model. The photoluminescence spectra contained the oligomer and sensitized fluorescein emission.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are naturally occurring polymers that can kill bacteria by destabilizing their membranes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to better understand the action of the AMP chrysophsin-3 on supported lipid bilayers (SLB) of phosphatidylcholine. Interaction of the SLB with chrysophsin-3 at 0.

View Article and Find Full Text PDF

Sum frequency generation (SFG) vibrational spectroscopy has been applied to the investigation of peptide immobilization on a polymer surface as a function of time and peptide conformation. Surface immobilization of biological molecules is important in many applications such as biosensors, antimicrobial materials, biobased fuel cells, nanofabrication, and multifunctional materials. Using C-terminus-cysteine-modified cecropin P1 (CP1c) as a model, we investigated the time-dependent immobilization behavior in situ in real time.

View Article and Find Full Text PDF

The M13 bacteriophage has been demonstrated to be a robust scaffold for bionanomaterial development. In this paper, we report on the chemical modifications of three kinds of reactive groups, i.e.

View Article and Find Full Text PDF

A surface sensitive second order nonlinear optical technique, sum frequency generation vibrational spectroscopy, was applied to study peptide orientation on polymer surfaces, supplemented by a linear vibrational spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy. Using the antimicrobial peptide Cecropin P1 as a model system, we have quantitatively demonstrated that chemically immobilized peptides on polymers adopt a more ordered orientation than less tightly bound physically adsorbed peptides. These differences were also observed in different chemical environments, for example, air versus water.

View Article and Find Full Text PDF

The antimicrobial peptide cecropin P1 (CP1) exhibits broad spectrum activity against planktonic bacteria, including Escherichia coli (E. coli). However, its activity when attached to a substrate has not been thoroughly studied.

View Article and Find Full Text PDF

Bacterial spores such as Bacillus atrophaeus are one of the most resistant life forms known and are extremely resistant to chemical and environmental factors in the dormant state. During germination, as bacterial spores progress towards the vegetative state, they become susceptible to anti-sporal agents. B.

View Article and Find Full Text PDF

The studies presented here explore antimicrobial peptide preferential binding behavior for a target pathogen, Escherichia coli O157:H7. A modified immunoassay and surface plasmon resonance were employed to evaluate immobilized peptide binding of whole bacterial cells. The knowledge gained may guide the rational design of peptides with enhanced species binding selectivity.

View Article and Find Full Text PDF

Fibrillar M13 bacteriophages were used as basic building blocks to generate thin films with aligned nanogrooves, which, upon chemical grafting with RGD peptides, guide cell alignment and orient the cell outgrowth along defined directions.

View Article and Find Full Text PDF

The surface structure of an antimicrobial peptide, cecropin P1, immobilized to a gold surface via a terminal cysteine residue was investigated. Using reflection-absorption infrared spectroscopy, surface plasmon resonance, and X-ray photoelectron spectroscopy, the effects of pH, solution conformation, and concentration on the immobilized peptide conformation, average orientation, and surface density were determined. Under all conditions investigated, the immobilized peptides were alpha-helical in a predominately flat, random orientation.

View Article and Find Full Text PDF

Fluorescently labeled antimicrobial peptides were evaluated as a potential replacement of labeled antibodies in a sandwich assay for the detection of Escherichia coli O157:H7. Antimicrobial peptides naturally bind to the lipopolysaccharide component of bacterial cell walls as part of their mode of action. Because of their small size relative to antibodies peptides can bind to cell surfaces with greater density, thereby increasing the optical signal and improving sensitivity.

View Article and Find Full Text PDF

A set of carboxylate-functionalized poly(phenylene ethynylene)s (PPEs) has been synthesized in which the carboxylic acid groups are separated from the polymer backbone by oligo(ethylene glycol) spacer units. These polymers are soluble in water and organic solvents and have photophysical properties that are sensitive to solvent conditions, with high salt content and the absence of surfactant promoting the formation of aggregates of relatively low quantum yield and long fluorescence lifetime. Quenching of these materials by the dinitrophenyl (DNP) chromophore (K(SV) approximately 10(4)) is also highly solvent-dependent.

View Article and Find Full Text PDF

An immobilization scheme for bacterial cells is described, in which the antimicrobial peptide cecropin P1 was used to trap Escherichia coli K-12 and O157:H7 cells on microtiter plate well surfaces. Cecropin P1 was covalently attached to the well surfaces, and E. coli cells were allowed to bind to the peptide-coated surface.

View Article and Find Full Text PDF

A procedure has been developed for the isolation of recombinant spider silk proteins based upon their unique stability and solubilization characteristics. Three recombinant silk proteins, (SpI)7, NcDS, and [(SpI)4/(SpII)1]4, were purified by extraction with organic acids followed by affinity or ion exchange chromatography resulting in 90-95% pure silk solutions. The protein yield of NcDS (15 mg/L culture) and (SpI)7 (35 mg/L) increased 4- and 5-fold, respectively, from previously reported values presumably due to a more complete solubilization of the expressed recombinant protein.

View Article and Find Full Text PDF

Porins are essential pore-forming proteins found in the outer membrane of several gram-negative bacteria. Investigating the relationships between molecular structure and function involves an extremely time-consuming and labor-intensive purification procedure. We report a method for rapid extraction of the outer membrane protein, OmpF, from freeze-dried Escherichia coli cells using valeric acid, alleviating the effort and time in sample preparation.

View Article and Find Full Text PDF