Histone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments.
View Article and Find Full Text PDFUnlabelled: The loss of pancreatic β-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of β-cell identity, insulin secretion, and glucose homeostasis. We show that the β-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many β-cell genes, and concomitant increase of non-β-cell markers.
View Article and Find Full Text PDFThe glucagon-like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential in type 2 diabetes (T2D) treatment, notably by improving β cell functions. The cell-cycle regulator and transcription factor E2f1 is involved in glucose homeostasis by modulating β cell mass and function. Here, we report that β cell-specific genetic ablation of E2f1 (E2f1) impairs glucose homeostasis associated with decreased expression of the Glp-1 receptor (Glp1r) in E2f1 pancreatic islets.
View Article and Find Full Text PDFType 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis.
View Article and Find Full Text PDFObjectives: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.
View Article and Find Full Text PDF