Oscillatory synthesis and secretion of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), under the control of pulsatile hypothalamic gonadotropin-releasing hormone (GnRH), is essential for normal reproductive development and fertility. The molecular mechanisms by which various patterns of pulsatile GnRH regulate gonadotrope responsiveness remain poorly understood. In contrast to the alpha and LH beta subunit genes, FSH beta subunit transcription is preferentially stimulated at low rather than high frequencies of pulsatile GnRH.
View Article and Find Full Text PDFAlthough FSH plays an essential role in controlling gametogenesis, the biology of FSHbeta transcription remains poorly understood, but is known to involve the complex interplay of multiple endocrine factors including GnRH. We have identified a GnRH-responsive element within the rat FSHbeta promoter containing an E-box and partial cAMP response element site that are bound by the basic helix loop helix transcription factor family members, upstream stimulating factor (USF)-1/USF-2, and the basic leucine zipper member, cAMP response element-binding protein (CREB), respectively. Expression studies with CREB, USF-1/USF-2, and activating protein-1 demonstrated that the USF transcription factors increased basal transcription, an effect not observed if the cognate binding site was mutated.
View Article and Find Full Text PDFBoth activin and GnRH can independently stimulate expression of the FSHbeta subunit gene. In this study, we used the gonadotrope-derived LbetaT2 cell line to investigate the potential interaction between activin and GnRH in regulating the transcriptional activity of the rat FSHbeta gene promoter. Activin A and GnRH synergistically enhanced rat FSHbeta transcriptional activity.
View Article and Find Full Text PDF