Publications by authors named "Chariya Virojanadara"

An investigation of how electron/photon beam exposures affect the intercalation rate of Na deposited on graphene prepared on Si-face SiC is presented. Focused radiation from a storage ring is used for soft X-ray exposures while the electron beam in a low energy electron microscope is utilized for electron exposures. The microscopy and core level spectroscopy data presented clearly show that the effect of soft X-ray exposure is significantly greater than of electron exposure, , it produces a greater increase in the intercalation rate of Na.

View Article and Find Full Text PDF

Only a single linearly dispersing π-band cone, characteristic of monolayer graphene, has so far been observed in Angle Resolved Photoemission (ARPES) experiments on multilayer graphene grown on C-face SiC. A rotational disorder that effectively decouples adjacent layers has been suggested to explain this. However, the coexistence of μm-sized grains of single and multilayer graphene with different azimuthal orientations and no rotational disorder within the grains was recently revealed for C-face graphene, but conventional ARPES still resolved only a single π-band.

View Article and Find Full Text PDF

Using scanning tunneling microscopy (STM), electrospray ionization mass spectrometry (ESI-MS), and X-ray photoelectron spectroscopy (XPS), we demonstrate that a free [2]catenane consisting of two interlocking 30-membered rings (cat-30) can be deposited on a Ag(111) surface by vacuum sublimation without decomposition. The deposited cat-30 molecules self-organize as ordered dimer chain structures at the surface, presumably via intermolecular pi-pi stacking. An in situ addition of Cu atoms to the surface-adsorbed catenanes induces a drastic change in the molecular organization, i.

View Article and Find Full Text PDF

The adsorption of trimesic acid (TMA) on Cu(110) has been studied in the temperature range between 130 and 550 K and for coverages up to one monolayer. We combine scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), reflection absorption infrared spectroscopy (RAIRS), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations to produce a detailed adsorption phase diagram for the TMA/Cu(110) system as a function of the molecular coverage and the substrate temperature. We identify a quite complex set of adsorption phases, which are determined by the interplay between the extent of deprotonation, the intermolecular bonding, and the overall energy minimization.

View Article and Find Full Text PDF