Publications by authors named "Charitha Madiraju"

Multiplex arrays designed for enzyme-linked immunosorbent assays (ELISAs) are robust and cost-effective for profiling biomarkers. Identification of relevant biomarkers in biological matrices or fluids helps in the understanding of disease pathogenesis. Here, we describe a sandwich ELISA-based multiplex assay to assess growth factor and cytokine levels in cerebrospinal fluid (CSF) samples derived from multiple sclerosis patients, amyotrophic lateral sclerosis patients, and control subjects without any neurological disorder.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assay (ELISA) is an immunological assay widely used in basic science research, clinical application studies, and diagnostics. The ELISA technique relies on the interaction between the antigen (i.e.

View Article and Find Full Text PDF

Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network.

View Article and Find Full Text PDF

Introduction: Objectives include (1) To create an opportunity for students enrolled in pharmacy programs to enhance their presentation skills by delivering research podium presentations at a regional conference; (2) To probe students' experience about podium presentations at the inaugural American Association for the Advancement of Science Pacific Division (AAAS PD) - American Association of Colleges of Pharmacy Students' Symposium; and (3) To introduce student pharmacists to science-oriented research.

Methods: The student presenters were asked to anonymously answer 15 questions before and after the symposium. Question topics included factual information about students' background and favorability perceptions about symposia.

View Article and Find Full Text PDF

Sepsis is an abnormal immune response to infection characterized by an overwhelming systemic inflammation and cell death. Non-apoptotic cell death pertaining to pyroptosis, necroptosis and autophagy contribute to sepsis pathogenesis apart from classical apoptotic cell death. The objective of the current study is to investigate the presence of molecular markers of relevance to apoptotic and non-apoptotic cell death in control healthy subjects and septic patient survivors.

View Article and Find Full Text PDF

Just-In-Time Teaching (JiTT) active learning pedagogy is utilized by various disciplines, but its value in a professional pharmacy curriculum has not yet been demonstrated. The purpose of our research study is to implement and evaluate JiTT in a Doctor of Pharmacy (PharmD) program. The impetus in implementing JiTT into a PharmD curriculum was to provide students with an out-of-classroom learning opportunity to enhance knowledge-based skills.

View Article and Find Full Text PDF

UBC13 is a noncanonical ubiquitin conjugating enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair and thus a potential radiosensitizer and chemosensitizer target for oncology.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators.

View Article and Find Full Text PDF

Background: Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026;

Findings: We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs.

View Article and Find Full Text PDF

Total syntheses of (-)-dictyostatin, 6,16-bis-epi-dictyostatin, 6,14,19-tris-epi-dictyostatin and a number of other isomers and analogs are reported. Three main fragments-top, middle and bottom-were first assembled and then joined by olefination or anionic addition reactions. After appending the two dienes at either end of the molecule, macrolactonization and deprotection completed the syntheses.

View Article and Find Full Text PDF
Article Synopsis
  • Compounds that target microtubules, like dictyostatin, show promise as cancer treatments, especially in overcoming resistance seen with drugs like paclitaxel.
  • Researchers tested various dictyostatin analogs to understand how structural changes impact their effectiveness against cancer cells, using advanced fluorescence assays to assess their activities.
  • Some analogs exhibited strong microtubule assembly induction and specific binding affinities, with established quantitative relationships between their structure and biological effects, guiding future drug development.
View Article and Find Full Text PDF

(-)-Dictyostatin is a sponge-derived, 22-member macrolactone natural product shown to cause cells to accumulate in the G2/M phase of the cell cycle, with changes in intracellular microtubules analogous to those observed with paclitaxel treatment. Dictyostatin also induces assembly of purified tubulin more rapidly than does paclitaxel, and nearly as vigorously as does dictyostatin's close structural congener, (+)-discodermolide (Isbrucker et al. (2003), Biochem.

View Article and Find Full Text PDF

[structure: see text] (-)-16-Normethyldictyostatin has been made by total synthesis and is a potent antitumor agent in cells expressing wild-type tubulin and in one mutant cell line that is resistant to paclitaxel, but it is much less active than dictyostatin in another paclitaxel-resistant cell line where Val is substituted for Phe270. This provides strong evidence that the C16 methyl group of the dictyostatins is oriented toward Phe270 in the paclitaxel-binding site on beta-tubulin.

View Article and Find Full Text PDF

An efficient, convergent and stereocontrolled synthesis of simplified analogues of the potent antimitotic agent (+)-discodermolide has been achieved and several small libraries have been prepared. In all the libraries, the discodermolide methyl groups at C14 and C16 and the C7 hydroxy group were removed and the lactone was replaced by simple esters. Other modifications introduced in each series of analogues were related to C11, C17 and C19 of the natural product.

View Article and Find Full Text PDF

Several novel analogues of (+)-discodermolide were synthesized via a convergent strategy that used Wittig reactions to append left and right side chains to a central scaffold and then tested for biological activity. Three of the analogues in the 4-epi-7-dehydroxy-14,16-didemethyl series, 6a-c, had interesting actions. The C3-methoxymethyl ether analogue 6b was more active in antiproliferative cell-based assays as well as in hypernucleation and paclitaxel site competition assays with isolated tubulin than the other analogues, including 6a, which contained a free hydroxyl group at the C3 position.

View Article and Find Full Text PDF

(+)-Discodermolide, a C24:4, trihydroxylated, octamethyl, carbamate-bearing fatty acid lactone originally isolated from a Caribbean sponge, has proven to be the most potent of the microtubule-stabilizing agents. Recent studies suggest that it or its analogues may have advantages over other classes of microtubule-stabilizing agents. (+)-Discodermolide's complex molecular architecture has made structure-activity relationship analysis in this class of compounds a formidable task.

View Article and Find Full Text PDF

[structure: see text] Two hybrid analogues of discodermolide and dictyostatin (3, 26) have been designed and synthesized. These are the first macrocyclic analogues of discodermolide and biological activities were evaluated and compared with linear discodermolide analogues.

View Article and Find Full Text PDF