Background: Endothelial cells (ECs) play a major role in malaria pathogenesis, as a point of direct contact of parasitized red blood cells to the blood vessel wall. The study of cytoskeleton structures of ECs, whose main functions are to maintain shape and provide strength to the EC membrane is important in determining the severe sequelae of Plasmodium falciparum malaria. The work investigated the cytoskeletal changes (microfilaments-actin, microtubules-tubulin and intermediate filaments-vimentin) in ECs induced by malaria sera (Plasmodium vivax, uncomplicated P.
View Article and Find Full Text PDFBackground: Cerebral malaria (CM) is associated with sequestration of parasitized red blood cells (PRBCs) in the capillaries. Often, the association of CM with cerebral oedema is related with high mortality rate. Morphological changes of the choroid plexus (CP) and caspase-3 expression in CM have not been reported.
View Article and Find Full Text PDFBackground: We aimed to determine whether neutralizing high mobility group box-1 (HMGB-1) prevents the release of HMGB-1 and proinflammatory cytokines on hemozoin (Hz)-induced alveolar epithelial cell in a model of malaria associated ALI/ARDS.
Methods: This study was conducted in the Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand in 2020. Human pulmonary alveolar epithelial cells (HPAEpiCs) were exposed to medium alone or 20 μM Hz for 24 h and incubated with different concentrations (1, 5, and 10 μg/ml) of anti-HMGB-1 monoclonal antibody (mAb) for various times (0, 4, 12, 24, and 48 h).