Publications by authors named "Charisse M Nartey"

Computational models of evolution are valuable for understanding the dynamics of sequence variation, to infer phylogenetic relationships or potential evolutionary pathways and for biomedical and industrial applications. Despite these benefits, few have validated their propensities to generate outputs with in vivo functionality, which would enhance their value as accurate and interpretable evolutionary algorithms. We demonstrate the power of epistasis inferred from natural protein families to evolve sequence variants in an algorithm we developed called sequence evolution with epistatic contributions (SEEC).

View Article and Find Full Text PDF

Inferring the historical and biophysical causes of diversity within protein families is a complex puzzle. A key to unraveling this problem is characterizing the rugged topography of sequence-function adaptive landscapes. Using biochemical data from a 2 = 512 combinatorial library of tobacco 5--aristolochene synthase (TEAS) mutants engineered to make the native major product of Egyptian henbane premnaspirodiene synthase (HPS) and a complementary 512 mutant HPS library, we address the question of how product specificity is controlled.

View Article and Find Full Text PDF

Computational models of evolution are valuable for understanding the dynamics of sequence variation, to infer phylogenetic relationships or potential evolutionary pathways and for biomedical and industrial applications. Despite these benefits, few have validated their propensities to generate outputs with functionality, which would enhance their value as accurate and interpretable evolutionary algorithms. We demonstrate the power of epistasis inferred from natural protein families to evolve sequence variants in an algorithm we developed called Sequence Evolution with Epistatic Contributions.

View Article and Find Full Text PDF

We introduce a model of amino acid sequence evolution that accounts for the statistical behavior of real sequences induced by epistatic interactions. We base the model dynamics on parameters derived from multiple sequence alignments analyzed by using direct coupling analysis methodology. Known statistical properties such as overdispersion, heterotachy, and gamma-distributed rate-across-sites are shown to be emergent properties of this model while being consistent with neutral evolution theory, thereby unifying observations from previously disjointed evolutionary models of sequences.

View Article and Find Full Text PDF

"Function" is a vitally important concept in the scientific community. Scientists use it to describe and address a wide variety of research problems. In publications, however, scientists within and across disciplines interpret function differently.

View Article and Find Full Text PDF

The word function has many different meanings in molecular biology. Here we explore the use of this word (and derivatives like functional) in research papers about de novo gene birth. Based on an analysis of 20 abstracts we propose a simple lexicon that, we believe, will help scientists and philosophers discuss the meaning of function more clearly.

View Article and Find Full Text PDF

The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants.

View Article and Find Full Text PDF

The plant terpene synthase (TPS) family is responsible for the biosynthesis of a variety of terpenoid natural products possessing diverse biological functions. TPSs catalyze the ionization and, most commonly, rearrangement and cyclization of prenyl diphosphate substrates, forming linear and cyclic hydrocarbons. Moreover, a single TPS often produces several minor products in addition to a dominant product.

View Article and Find Full Text PDF