Adeno-associated virus-mediated gene therapies for certain muscle disorders require regulatory cassettes that provide high-level, striated muscle-specific activity. However, cardiotoxicity has emerged as a serious concern in clinical trials for Duchenne muscular dystrophy and X-linked myotubular myopathy. While this may be caused by systemic inflammatory effects of the treatment, high transgene expression in the heart may also play a role.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is arguably one of the most challenging genetic diseases to understand and treat. The disease is caused by epigenetic dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, pathogenic misexpression of in skeletal muscle.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
March 2021
Facioscapulohumeral muscular dystrophy (FSHD) is caused by incomplete silencing of the disease locus, leading to pathogenic misexpression of in skeletal muscle. Previously, we showed that CRISPR inhibition could successfully target and repress in FSHD myocytes. However, an effective therapy will require both efficient delivery of therapeutic components to skeletal muscles and long-term repression of the disease locus.
View Article and Find Full Text PDFIn this issue of Developmental Cell, Chew et al. (2019) show that the pioneer factor DUX4 is misexpressed in tumors, where it suppresses anti-tumor immune activity. Their findings provide a new mechanism for immune evasion in cancer and highlight the pathogenic effects of re-expressing an embryonic program in adult cells.
View Article and Find Full Text PDFAnnu Rev Genomics Hum Genet
August 2019
Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, provides a powerful model of the complex interplay between genetic and epigenetic mechanisms of chromatin regulation. FSHD is caused by dysregulation of a macrosatellite repeat, either by contraction of the repeat or by mutations in silencing proteins. Both cases lead to chromatin relaxation and, in the context of a permissive allele, aberrant expression of the gene in skeletal muscle.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is caused by epigenetic de-repression of the disease locus, leading to pathogenic misexpression of the DUX4 gene in skeletal muscle. While the factors and pathways involved in normal repression of the FSHD locus in healthy cells have been well characterized, very little is known about those responsible for the aberrant activation of DUX4-fl in FSHD myocytes. Reasoning that DUX4-fl activators might represent useful targets for small molecule inhibition, we performed a highly targeted, candidate-based screen of epigenetic regulators in primary FSHD myocytes.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite repeat. The resulting DNA hypomethylation and relaxation of epigenetic repression leads to increased expression of the deleterious DUX4-fl mRNA encoded within the distal D4Z4 repeat. With the typical late onset of muscle weakness, prevalence of asymptomatic individuals, and an autosomal dominant mode of inheritance, FSHD is often passed on from one generation to the next and affects multiple individuals within a family.
View Article and Find Full Text PDFTrends Pharmacol Sci
April 2016
Versatility of CRISPR/Cas9-based platforms makes them promising tools for the correction of diverse genetic/epigenetic disorders. Here we contrast the use of these genome editing tools in two myopathies with very different molecular origins: Duchenne muscular dystrophy, a monogenetic disease, and facioscapulohumeral muscular dystrophy, an epigenetic disorder with unique therapeutic challenges.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent myopathies, affecting males and females of all ages. Both forms of the disease are linked by epigenetic derepression of the D4Z4 macrosatellite repeat array at chromosome 4q35, leading to aberrant expression of D4Z4-encoded RNAs in skeletal muscle. Production of full-length DUX4 (DUX4-fl) mRNA from the derepressed D4Z4 array results in misexpression of DUX4-FL protein and its transcriptional targets, and apoptosis, ultimately leading to accumulated muscle pathology.
View Article and Find Full Text PDFBackground: Both forms of facioscapulohumeral muscular dystrophy (FSHD) are associated with aberrant epigenetic regulation of the chromosome 4q35 D4Z4 macrosatellite. Chromatin changes due to large deletions of heterochromatin (FSHD1) or mutations in chromatin regulatory proteins (FSHD2) lead to relaxation of epigenetic repression and increased expression of the deleterious double homeobox 4 (DUX4) gene encoded within the distal D4Z4 repeat. However, many individuals with the genetic requirements for FSHD remain asymptomatic throughout their lives.
View Article and Find Full Text PDFAntioxid Redox Signal
June 2015
Significance: Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts.
View Article and Find Full Text PDFBoth Glis, the downstream effectors of hedgehog signaling, and Zic transcription factors are required for Myf5 expression in the epaxial somite. Here we demonstrate a novel synergistic interaction between members of both families and Pax3, a paired-domain transcription factor that is essential for both myogenesis and neural crest development. We show that Pax3 synergizes with both Gli2 and Zic1 in transactivating the Myf5 epaxial somite (ES) enhancer in concert with the Myf5 promoter.
View Article and Find Full Text PDFMethods Mol Biol
April 2012
The mechanisms by which muscle gene expression is initiated and maintained are not fully understood. Muscle genes are regulated by combinatorial interactions between numerous transcription factors bound to enhancers and promoters, and their associated protein complexes. Among the most important are the MyoD and MEF2 transcription factor families, but dozens of other factors play important regulatory roles, and many additional transcription factors are certain to be involved.
View Article and Find Full Text PDFBackground: Hundreds of genes, including muscle creatine kinase (MCK), are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood.
Results: Modulatory region 1 (MR1) is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE) containing a paired E-box/myocyte enhancer factor 2 (MEF2) regulatory motif resides within MR1.
Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes.
View Article and Find Full Text PDFThis study identifies KLF3 as a transcriptional regulator of muscle genes and reveals a novel synergistic interaction between KLF3 and serum response factor (SRF). Using quantitative proteomics, KLF3 was identified as one of several candidate factors that recognize the MPEX control element in the Muscle creatine kinase (MCK) promoter. Chromatin immunoprecipitation analysis indicated that KLF3 is enriched at many muscle gene promoters (MCK, Myosin heavy chain IIa, Six4, Calcium channel receptor alpha-1, and Skeletal alpha-actin), and two KLF3 isoforms are upregulated during muscle differentiation.
View Article and Find Full Text PDFWe identified a conserved sequence within the Muscle creatine kinase (MCK) promoter that is critical for high-level activity in skeletal and cardiac myocytes (MCK Promoter Element X [MPEX]). After selectively enriching for MPEX-binding factor(s) (MPEX-BFs), ICAT-based quantitative proteomics was used to identify MPEX-BF candidates, one of which was MAZ (Myc-associated zinc finger protein). MAZ transactivates the MCK promoter and binds the MPEX site in vitro, and chromatin immunoprecipitation analysis demonstrates enrichment of MAZ at the endogenous MCK promoter and other muscle gene promoters (Skeletal alpha-actin, Desmin, and alpha-Myosin heavy chain) in skeletal and cardiac myocytes.
View Article and Find Full Text PDFSystemic delivery of recombinant adeno-associated virus (rAAV) 6 vectors mediates efficient transduction of the entire striated musculature, making this an attractive strategy for muscle gene therapy. However, owing to widespread transduction of non-muscle tissues, optimization of this method would benefit from the use of muscle-specific promoters. Most such promoters either lack high-level expression in certain muscle types or are too large for inclusion in rAAV vectors encoding microdystrophin.
View Article and Find Full Text PDFIn zebrafish, endoderm induction occurs in marginal blastomeres and requires Casanova (Cas), the first endoderm-specific factor expressed in the embryo. Whereas the transcription factors Gata5 and Bon are necessary and sufficient for cas expression in marginal blastomeres, Bon and Gata5 are unable to induce cas in animal pole cells, suggesting that cas expression requires an additional, unidentified factor(s). Here, we show that cas expression depends upon the T box transcription factor Eomesodermin (Eomes), a maternal determinant that is localized to marginal blastomeres.
View Article and Find Full Text PDFTranscriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins.
View Article and Find Full Text PDFThe 1256-base pair enhancer-promoter of the mouse muscle creatine kinase gene includes three CAnnTG E-boxes that are conserved among mammals and have flanking and middle sequences conforming to consensus muscle regulatory factor binding sites. This study seeks to determine whether these E-boxes are critical for muscle creatine kinase expression in physiologically distinct muscles. Mutations of the "right" and "left" E-boxes in the enhancer decreased expression in cultured skeletal myocytes approximately 10- and 2-fold, respectively, whereas a "promoter" E-box mutation had little effect.
View Article and Find Full Text PDFThe muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer-promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle.
View Article and Find Full Text PDF