Publications by authors named "Chardon F"

Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations.

View Article and Find Full Text PDF

High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that genetic variants linked to autoimmune diseases are often located in areas that regulate gene activity in CD4 T cells, impacting disease risk through gene regulation changes.
  • They analyzed over 18,000 variants associated with autoimmune diseases and identified 545 that influence gene expression, showing a strong connection to causal variants.
  • The study demonstrates that these variants work through common regulatory pathways and that they affect gene networks crucial for T cell activation and proliferation, offering insights into how they may contribute to autoimmune disease risk.
View Article and Find Full Text PDF

Root senescence remains largely unexplored. In this study, the time-course of the morphological, metabolic, and proteomic changes occurring with root aging were investigated, providing a comprehensive picture of the root senescence program. We found novel senescence-related markers for the characterization of the developmental stage of root tissues.

View Article and Find Full Text PDF

CRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive cis-regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes.

View Article and Find Full Text PDF

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.

View Article and Find Full Text PDF

Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments.

View Article and Find Full Text PDF

Protein hydrolysates have gained interest as plant biostimulants due to their positive effects on plant performances. They are mainly composed of amino acids, but there is no evidence of the role of individual of amino acids as biostimulants. In this study we carried out experiments to monitor the development of Arabidopsis seedlings on amino acid containing media in order to analyze the biostimulant properties of the twenty individual proteinogenic amino acids.

View Article and Find Full Text PDF
Article Synopsis
  • * The study identifies MiniBAR, a protein that interacts with Rac1 and Rab35, as crucial for ciliogenesis, helping to regulate cellular processes like actin contractility and trafficking to cilia.
  • * Depleting MiniBAR results in shorter cilia and related issues in zebrafish, such as left-right asymmetry defects, highlighting its role in controlling both the actin cytoskeleton and membrane transport for proper ciliogenesis.
View Article and Find Full Text PDF

Quantitative disease resistance (QDR) remains the most prevalent form of plant resistance in crop fields and wild habitats. Genome-wide association studies (GWAS) have proved to be successful in deciphering the quantitative genetic basis of complex traits such as QDR. To unravel the genetics of QDR to the devastating worldwide bacterial pathogen Ralstonia solanacearum, we performed a GWAS by challenging a highly polymorphic local mapping population of Arabidopsis thaliana with four R.

View Article and Find Full Text PDF

Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the chromatin environment on prime editing efficiency.

View Article and Find Full Text PDF

CRISPR-based gene activation (CRISPRa) is a promising therapeutic approach for gene therapy, upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes.

View Article and Find Full Text PDF
Article Synopsis
  • - Greenhouse gas emissions are causing a climate crisis that needs urgent action to reduce their harmful impacts on life on Earth.
  • - Agriculture and land use account for about 25% of total GHG emissions, making it crucial for plant scientists to lead efforts in sustainable practices.
  • - The PlantACT! initiative outlines a strategic plan for plant scientists to develop solutions in various time frames and identifies necessary changes in personal behavior, institutions, and funding to support these efforts.
View Article and Find Full Text PDF

Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood.

View Article and Find Full Text PDF

Carbon (C) and nitrogen (N) metabolisms have long been known to be coupled, and this is required for adjusting nitrogen use efficiency (NUE). Despite this intricate relationship, it is still unclear how deregulation of sugar transport impacts N allocation. Here, we investigated in Arabidopsis the consequences of the simultaneous downregulation of the genes coding for the sugar transporters SWEET11, SWEET12, SWEET16, and SWEET17 on various anatomical and physiological traits ranging from the stem's vascular system development to plant biomass production, seed yield, and N remobilization and use efficiency.

View Article and Find Full Text PDF

Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process.

View Article and Find Full Text PDF

Plants are sessile organisms that take up nitrogen (N) from the soil for growth and development. At the postflowering stage, N that plants require for seed growth and filling derives from either root uptake or shoot remobilization. The balance between N uptake and N remobilization determines the final carbon (C) and N composition of the seed.

View Article and Find Full Text PDF

Centromeres are key elements for chromosome segregation. Canonical centromeres are built over long-stretches of tandem repetitive arrays. Despite being quite abundant compared to other loci, centromere sequences overall still represent only 2 to 5% of the human genome, therefore studying their genetic and epigenetic features is a major challenge.

View Article and Find Full Text PDF

DNA is naturally well suited to serve as a digital medium for in vivo molecular recording. However, contemporary DNA-based memory devices are constrained in terms of the number of distinct 'symbols' that can be concurrently recorded and/or by a failure to capture the order in which events occur. Here we describe DNA Typewriter, a general system for in vivo molecular recording that overcomes these and other limitations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how carbon (C) and nitrogen (N) transport in plants is influenced by genetics and environmental factors, focusing on the metabolite profiles of phloem and xylem in five Arabidopsis thaliana accessions grown under different nitrogen conditions.
  • Significant differences were found in the composition of xylem saps and phloem exudates, with xylem showing a higher variability in amino acids and organic acids based on nitrogen availability, while phloem predominantly contained carbohydrates.
  • The results suggest that both genetic makeup and N supply significantly affect metabolite content, particularly organic acids, indicating that nutrient transport is tightly linked to central metabolism and may serve as an adaptive trait for plants.
View Article and Find Full Text PDF

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins.

View Article and Find Full Text PDF

Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes.

View Article and Find Full Text PDF

CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection.

View Article and Find Full Text PDF

Current methods to delete genomic sequences are based on clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and pairs of single-guide RNAs (sgRNAs), but can be inefficient and imprecise, with errors including small indels as well as unintended large deletions and more complex rearrangements. In the present study, we describe a prime editing-based method, PRIME-Del, which induces a deletion using a pair of prime editing sgRNAs (pegRNAs) that target opposite DNA strands, programming not only the sites that are nicked but also the outcome of the repair. PRIME-Del achieves markedly higher precision than CRISPR-Cas9 and sgRNA pairs in programming deletions up to 10 kb, with 1-30% editing efficiency.

View Article and Find Full Text PDF