Publications by authors named "Charalampos Bechlioulis"

In this paper, we address the trajectory-/target-tracking and obstacle-avoidance problem for nonholonomic mobile robots subjected to diamond-shaped velocity constraints and predefined output performance specifications. The proposed scheme leverages the adaptive performance control to dynamically adjust the user-defined output performance specifications, ensuring compliance with input and safety constraints. A key feature of this approach is the integration of multiple constraints into a single adaptive performance function, governed by a simple adaptive law.

View Article and Find Full Text PDF

Multi-agent systems are utilized more often in the research community and industry, as they can complete tasks faster and more efficiently than single-agent systems. Therefore, in this paper, we are going to present an optimal approach to the multi-agent navigation problem in simply connected workspaces. The task involves each agent reaching its destination starting from an initial position and following an optimal collision-free trajectory.

View Article and Find Full Text PDF

In control theory, reactive methods have been widely celebrated owing to their success in providing robust, provably convergent solutions to control problems. Even though such methods have long been formulated for motion planning, optimality has largely been left untreated through reactive means, with the community focusing on discrete/graph-based solutions. Although the latter exhibit certain advantages (completeness, complicated state-spaces), the recent rise in Reinforcement Learning (RL), provides novel ways to address the limitations of reactive methods.

View Article and Find Full Text PDF

In this work, we address the single robot navigation problem within a planar and arbitrarily connected workspace. In particular, we present an algorithm that transforms any static, compact, planar workspace of arbitrary connectedness and shape to a disk, where the navigation problem can be easily solved. Our solution benefits from the fact that it only requires a fine representation of the workspace boundary (i.

View Article and Find Full Text PDF

In this work, we propose a hybrid control scheme to address the navigation problem for a team of disk-shaped robotic platforms operating within an obstacle-cluttered planar workspace. Given an initial and a desired configuration of the system, we devise a hierarchical cell decomposition methodology which is able to determine which regions of the configuration space need to be further subdivided at each iteration, thus avoiding redundant cell expansions. Furthermore, given a sequence of free configuration space cells with an arbitrary connectedness and shape, we employ harmonic transformations and harmonic potential fields to accomplish safe transitions between adjacent cells, thus ensuring almost-global convergence to the desired configuration.

View Article and Find Full Text PDF

In this work, we develop a reactive algorithm for autonomous exploration of indoor, unknown environments for multiple autonomous multi-rotor robots. The novelty of our approach rests on a two-level control architecture comprised of an Artificial-Harmonic Potential Field (AHPF) for navigation and a low-level tracking controller. Owing to the AHPF properties, the field is provably safe while guaranteeing workspace exploration.

View Article and Find Full Text PDF

This paper addresses the distance-based formation control problem for multiple Autonomous Underwater Vehicles (AUVs) in a leader-follower architecture. The leading AUV is assigned a task to track a desired trajectory and the following AUVs try to set up a predefined formation structure by attaining specific distances among their neighboring AUVs, while avoiding collisions and enabling at the same time relative localization. More specifically, a decentralized control protocol of minimal complexity is proposed that achieves prescribed, arbitrarily fast and accurate formation establishment.

View Article and Find Full Text PDF

This paper addresses the problem of cooperative object transportation in a constrained workspace involving static obstacles, with the coordination relying on implicit communication established via the commonly grasped object. In particular, we consider a decentralized leader-follower architecture for multiple mobile manipulators, where the leading robot, which has exclusive knowledge of both the object's desired configuration and the position of the obstacles in the workspace, tries to navigate the overall formation to the desired configuration while at the same time it avoids collisions with the obstacles. On the other hand, the followers estimate the object's desired trajectory profile via novel prescribed performance estimation laws that drive the estimation errors to an arbitrarily small predefined residual set.

View Article and Find Full Text PDF

A neuroadaptive control scheme for strict feedback systems is designed, which is capable of achieving prescribed performance guarantees for the output error while keeping all closed-loop signals bounded, despite the presence of unknown system nonlinearities and external disturbances. The aforementioned properties are induced without resorting to a special initialization procedure or a tricky control gains selection, but addressing through a constructive methodology the longstanding problem in neural network control of a priori guaranteeing that the system states evolve strictly within the compact region in which the approximation capabilities of neural networks hold. Moreover, it is proven that robustness against external disturbances is significantly expanded, with the only practical constraint being the magnitude of the required control effort.

View Article and Find Full Text PDF

In this paper, we address unresolved issues in robot force/position tracking including the concurrent satisfaction of contact maintenance, lack of overshoot, desired speed of response, as well as accuracy level. The control objective is satisfied under uncertainties in the force deformation model and disturbances acting at the joints. The unknown nonlinearities that arise owing to the uncertainties in the force deformation model are approximated by a neural network linear in the weights and it is proven that the neural network approximation holds for all time irrespective of the magnitude of the modeling error, the disturbances, and the controller gains.

View Article and Find Full Text PDF