This work provides a method for the development of conductive water-based printing inks for gravure, flexography and screen-printing incorporating commercial resins that are already used in the printing industry. The development of the respective conductive materials/pigments is based on the simultaneous (in one step) reduction of silver salts and graphene oxide in the presence of 2,5-diaminobenzenesulfonic acid that is used for the first time as the common in-situ reducing agent for these two reactions. The presence of aminophenylsulfonic derivatives is essential for the reduction procedure and in parallel leads to the enrichment of the graphene surface with aminophenylsulfonic groups that provide a high hydrophilicity to the final materials/pigments.
View Article and Find Full Text PDFThe chemistry of metal-organic frameworks (MOFs) continues to expand rapidly, providing materials with diverse structures and properties. The reticular chemistry approach, where well-defined structural building blocks are combined together to form crystalline open framework solids, has greatly accelerated the discovery of new and important materials. However, its full potential toward the rational design of MOFs relies on the availability of highly connected building blocks because these greatly reduce the number of possible structures.
View Article and Find Full Text PDFPoly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements.
View Article and Find Full Text PDFHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available.
View Article and Find Full Text PDFGraphene/metal nanocomposites have shown a strong potential for use in electronic applications. In particular, the combination of silver nanowires (AgNWs) with graphene derivatives leads to the formation of an efficient conductive network, thus improving the electrical properties of a composite. This work focused on developing highly conductive hydrophilic hybrids of simultaneously functionalized and reduced graphene oxide (-rGO) and AgNWs in different weight ratios by following two different synthetic routes: (a) the physical mixture of -rGO and AgNWs, and (b) the in situ reduction of GO in the presence of AgNWs.
View Article and Find Full Text PDFThe use of ordered mesoporous matrices, and in particular carbon-based mesoporous nanoparticles has shown great potential towards enhancing the bioavailability of orally administered drugs. Nevertheless, elucidation of the in vivo absorption, distribution, and excretion of such carriers is essential for understanding their behaviour, and radiolabelling provides a very useful way to track their occurrence inside the body. In this work, uniform spherical CMK-1-type ordered mesoporous carbon nanoparticles have been radiolabelled with Technetium-99m (Tc) and traced after oral administration to mice.
View Article and Find Full Text PDFTwo different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state.
View Article and Find Full Text PDFNanotubes made of boron nitride (BN) and carbon have attracted considerable attention within the literature due to their unique mechanical, electrical and thermal properties. In this work, BN and carbon nanotubes, exhibiting high purity (>99%) and similar surface areas (~200 m/g), were systematically investigated for their thermal stability and oxidation behavior by combining thermal gravimetric analysis and differential scanning calorimetry methods at temperatures of up to ~1300 °C under a synthetic air flow environment. The BN nanotubes showed a good resistance to oxidation up to ~900 °C and fully transformed to boron oxide up to ~1100 °C, while the carbon nanotubes were stable up to ~450 °C and almost completely combusted up to ~800 °C.
View Article and Find Full Text PDFThe high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs' efficiency could be further increased by embedding them into a hydrogel phase for an prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
In this work, two types of mesoporous carbon particles with different morphology, size, and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.
View Article and Find Full Text PDFIntroduction: Silver decorated mesoporous carbons are interesting systems that may offer effective solutions for advanced wound care products by combining the well-known anti-microbial activity of silver nanoparticles with the versatile properties of ordered mesoporous carbons. Silver is being used as a topical antimicrobial agent, especially in wound repair. However, while silver shows bactericidal properties, it is also cytotoxic at high concentrations.
View Article and Find Full Text PDFPoly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester with numerous biomedical applications. PCL membranes show great potential in guided tissue regeneration because they are biocompatible, occlusive and space maintaining, but lack osteoconductivity. Therefore, two different types of mesoporous bioactive glasses (SiO-CaO-PO and SiO-SrO-PO) were synthesized and incorporated in PCL thin membranes by spin coating.
View Article and Find Full Text PDFPoly(ε-caprolactone) (PCL) is a bioresorbable synthetic polyester widely studied as a biomaterial for tissue engineering and controlled release applications, but its low bioactivity and weak mechanical performance limits its applications. In this work, nanosized bioglasses with two different compositions (SiO₂⁻CaO and SiO₂⁻CaO⁻P₂O₅) were synthesized with a hydrothermal method, and each one was used as filler in the preparation of PCL nanocomposites via the in situ ring opening polymerization of ε-caprolactone. The effect of the addition of 0.
View Article and Find Full Text PDFThe targeted synthesis of metal-organic frameworks (MOFs) with open metal sites, following reticular chemistry rules, provides a straightforward methodology toward the development of advanced porous materials especially for gas storage/separation applications. Using a palladated tetracarboxylate metalloligand as a 4-connected node, we succeeded in synthesizing the first heterobimetallic In(III)/Pd(II)-based MOF with square-octahedron (soc) topology. The new MOF, formulated as [InO(L)(HO)Cl]·n(solv) (1), features the oxo-centered trinuclear clusters, [In(μ-O)(-COO)], acting as trigonal-prismatic 6-connected nodes that linked together with the metalloligand trans-[PdCl(PDC)] (L) (PDC: pyridine-3,5-dicarboxylate) to form a 3D network.
View Article and Find Full Text PDFEncapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability.
View Article and Find Full Text PDFThe number of patients with chronic kidney disease increases while the number of available donor organs stays at approximately the same level. Unavoidable accumulation of the uremic toxins and cytokines for these patients comes as the result of malfunctioning kidneys and their high levels in the blood result in high morbidity and mortality. Unfortunately, the existing methods, like hemodialysis and hemofiltration, provide only partial removal of uremic toxins and/or cytokines from patients' blood.
View Article and Find Full Text PDFTowards the development of novel drug carriers for oral delivery of poorly soluble drugs mesoporous aerogel carbons (CAs), namely CA10 and CA20 with different pore sizes (10 and 20nm, respectively), were evaluated. The non-steroidal anti-inflammatory lipophilic compound ibuprofen was incorporated via passive loading. The drug loaded carbon aerogels were systemically investigated by means of High-Resolution Transmission Electron Microscopy (HR-TEM), Nitrogen physisorption studies, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), X-ray photon electron spectroscopy (XPS) and ζ-potential studies.
View Article and Find Full Text PDFA novel NbO-type MOF is reported based on a palladated organic linker, showing a remarkable gravimetric and volumetric CO2 uptake, reaching 201.8 cm(3) g(-1) (9.0 mmol g(-1), 39.
View Article and Find Full Text PDFOrdered mesoporous carbons that encapsulate the poorly soluble compounds ibuprofen and indomethacin were systematically studied by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) and X-ray photon electron spectroscopy (XPS). The results showed marked differences in the release profiles of the two drug molecules in simulated gastric fluids. In vitro toxicity profiles appear to be compatible with potential therapeutic applications bringing them to the forefront as carriers of poorly water soluble drugs.
View Article and Find Full Text PDFA lightweight, oxygen-rich carbon foam was prepared and doped with Pd/Hg alloy nanoparticles. The composite revealed high H2 sorption capacity (5 wt%) at room temperature and moderate pressure (2 MPa). The results were explained on the basis of the H2 spillover mechanism using Density Functional Theory.
View Article and Find Full Text PDFIn the present work the release behavior of special, multilaminate matrix-type polymer systems, is studied both theoretically and experimentally. Two different mathematical models have been employed to describe the release of a dispersed solute from both single- and multilayer matrices. A parameter sensitivity study shows that the incorporation of supersaturated matrices in the formation of multilaminate devices, with a nonuniform initial solute loading, can provide a delivery system with optimized performance compared to monolithic ones.
View Article and Find Full Text PDFPurpose: Generation of valuable information about the biphasic geometrical configuration of porcine stratum corneum from Very Small Angle Neutron Scattering (VSANS) data and investigation of its effect on the corresponding effective diffusivity.
Methods: Spectra of porcine stratum corneum are mathematically transformed in order to obtain the corresponding auto-correlation function (ACF). Model stratum corneum structures, matching this experimentally determined ACF, are then produced based on the "brick-and-mortar" configuration.
A comprehensive two phase model is developed to describe the sustained release of a solute or drug from a biphasic hydrogel substrate. Such a material consists of a continuous hydrophilic phase (polymer backbone in water) and a dispersion of spherical microdomains made of the hydrophobic side chains of the polymer organised in a micelle like fashion. The solute or drug is assumed to be encapsulated within the dispersed microdomains, and to diffuse from the interior to the surface of the microdomain where it exchanges following a Langmuir isotherm.
View Article and Find Full Text PDF