Publications by authors named "Chaozhi Kuang"

Simultaneous removal of heavy metals and organic contaminants remains a substantial challenge in the electro-Fenton (EF) system. Herein, we propose a facile and sustainable "iron-free" EF system capable of simultaneously removing hexavalent chromium (Cr (VI)) and para-chlorophenol (4-CP). The system comprises a nitrogen-doped and carbon-deficient porous carbon (dual-site NPC-D) cathode coupled with a MoS nanoarray promoter (MoS NA).

View Article and Find Full Text PDF

Conventional electrocatalytic degradation of pollutants involves either cathodic reduction or anodic oxidation process, which caused the low energy utilization efficiency. In this study, we successfully couple the anodic activation of sulfates with the cathodic HO production/activation to boost the generation of sulfate radical (SO) and hydroxyl radical (·OH) for the efficient degradation of emerging contaminants. The electrocatalysis reactor is composed of a modified-graphite-felt (GF) cathode, in-situ prepared by the carbonization of polyaniline (PANI) electrodeposited on a GF substrate, and a boron-doped diamond (BDD) anode.

View Article and Find Full Text PDF

In this research, bismuth vanadate-doped graphite felt (GF-BiVO) was successfully prepared by sol-gel method, in which BiVO owned superior electro-Fenton (EF) and solar-photo-electro-Fenton (SPEF) performance. Combined with the analysis by X-ray diffractometer (XRD), field emission transmission electron microscopy (FE-TEM), nitrogen adsorption-desorption isotherms and cyclic voltammetry (CV), the changes of electrodes were reflected in structure and physicochemical properties. The doping of monoclinic BiVO endued GF with a higher surface area and more electro-active sites and better electrode activity in comparison to Raw-GF.

View Article and Find Full Text PDF

Ciprofloxacin (CIP) is ubiquitous in the environment which poses a certain threat to human and ecology. In this investigation, the physical and electrochemical properties of graphite felt (GF) anodes which affected the anodic oxidation (AO) performance, and the CIP removal effect of GF were evaluated. The GFs were used as anodes for detection of ·OH with coumarin (COU) as molecule probe and removal of CIP in a 150 mL electrolytic cell with Pt cathode (AO-GF/Pt system).

View Article and Find Full Text PDF

The effluent from conventional treatment process (including anaerobic digestion and anoxic-oxic treatment) for pig farm wastewater was difficult to treat due to its low ratio of biochemical oxygen demand to chemical oxygen demand (BOD/COD) (<0.1). In the present study, electro-Fenton (EF) was used to improve the biodegradability of the mentioned effluent and the properties of self-prepared CeO-doped multi-wall carbon nanotubes (MWCNTs) electrodes were also studied.

View Article and Find Full Text PDF

The removal of trace antibiotics from the aquatic environment has received great interest. In this investigation, NaOH activated graphite felt (NaOH-GF) was characterized by multiple-methods, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle, linear sweep voltammetry (LSV) and electron paramagnetic resonance (EPR). The NaOH-GF was then used as the cathode in the electro-Fenton process for oxytetracycline (OTC) degradation, the experiment was carried out in an undivided and light-proof beaker with a Pt anode and a NaOH-GF cathode at pH 3.

View Article and Find Full Text PDF