Publications by authors named "Chaoyun Pan"

Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO).

View Article and Find Full Text PDF

Amino acid metabolism has been actively investigated as a potential target for antitumor therapy, but how it may alter the response to genotoxic chemotherapy remains largely unknown. Here, we report that the depletion of fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the final step of tyrosine catabolism, reduced chemosensitivity in epithelial ovarian cancer (EOC). The expression level of FAH correlated significantly with chemotherapy efficacy in patients with EOC.

View Article and Find Full Text PDF

Although recent studies demonstrate active mitochondrial metabolism in cancers, the precise mechanisms through which mitochondrial factors contribute to cancer metastasis remain elusive. Through a customized mitochondrion RNAi screen, we identified succinyl-CoA ligase ADP-forming subunit beta (SUCLA2) as a critical anoikis resistance and metastasis driver in human cancers. Mechanistically, SUCLA2, but not the alpha subunit of its enzyme complex, relocates from mitochondria to the cytosol upon cell detachment where SUCLA2 then binds to and promotes the formation of stress granules.

View Article and Find Full Text PDF

Lymph node (LN) metastasis is one of the most malignant clinical features in patients with cervical cancer (CCa). Understanding the mechanism of lymph node metastasis will provide treatment strategies for patients with CCa. Circular RNAs (circRNA) play a critical role in the development of human cancers.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) caused by platinum drugs are dangerous lesions that kill cancer cells in chemotherapy. Repair of DSB by homologous recombination (HR) and nonhomologous end joining (NHEJ) is frequently associated with platinum resistance in ovarian cancer. While the role of the HR pathway and HR-targeting strategy in platinum resistance is well studied, dissecting and targeting NHEJ machinery to overcome platinum resistance in ovarian cancer remain largely unexplored.

View Article and Find Full Text PDF

The cancer metastasis process involves dysregulated oncogenic kinase signaling, but how this orchestrates metabolic networks and signal cascades to promote metastasis is largely unclear. Here we report that inhibition of glutamate dehydrogenase 1 (GDH1) and ribosomal S6 kinase 2 (RSK2) synergistically attenuates cell invasion, anoikis resistance, and immune escape in lung cancer and more evidently in tumors harboring epidermal growth factor receptor (EGFR)-activating or EGFR inhibitor-resistant mutations. Mechanistically, GDH1 is activated by EGFR through phosphorylation at tyrosine 135 and, together with RSK2, enhances the cAMP response element-binding protein (CREB) activity via CaMKIV signaling, thereby promoting metastasis.

View Article and Find Full Text PDF

WEE1 has emerged as an attractive target in epithelial ovarian cancer (EOC), but how EOC cells may alter their sensitivity to WEE1 inhibition remains unclear. Here, through a cell cycle machinery-related gene RNAi screen, we found that targeting outer dense fiber of sperm tails 2-like (ODF2L) was a synthetic lethal partner with WEE1 kinase inhibition in EOC cells. Knockdown of ODF2L robustly sensitized cells to treatment with the WEE1 inhibitor AZD1775 in EOC cell lines in vitro as well as in xenografts in vivo.

View Article and Find Full Text PDF

Context: Qiangli Wuhu (QLWH) mixture is a concoction approved and registered by Ningxia Medical Products Administration. It has therapeutic effects on various types of pneumonia.

Objective: To clarify the mechanisms of QLWH in treating pneumonia.

View Article and Find Full Text PDF

Platinum resistance accounts for much of the high mortality and morbidity associated with ovarian cancer. Identification of targets with significant clinical translational potential remains an unmet challenge. Through a high-throughput synthetical lethal screening for clinically relevant targets using 290 kinase inhibitors, we identify calcium/calmodulin-dependent protein kinase II gamma (CAMK2G) as a critical vulnerability in cisplatin-resistant ovarian cancer cells.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is frequently characterized by metabolic and immune remodeling in the tumor microenvironment. We previously discovered that liver-specific deletion of fructose-1, 6-bisphosphatase 1 (FBP1), a gluconeogenic enzyme ubiquitously suppressed in HCC tissues, promotes liver tumorigenesis and induces metabolic and immune perturbations closely resembling human HCC. However, the underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are known to act as key regulators in a variety of malignancies. However, the role of circRNAs in cervical cancer (CCa) remains largely unknown. Herein, we demonstrated that a circRNA derived from the TADA2A gene (hsa_circ_0043280) was significantly downregulated in CCa and that this reduction in expression was correlated with a poor prognosis.

View Article and Find Full Text PDF

The growing field of tumor metabolism has greatly expanded our knowledge of metabolic reprogramming in cancer. Apart from their established roles, various metabolic enzymes and metabolites harbor non-canonical ("moonlighting") functions to support malignant transformation. In this article, we intend to review the current understanding of moonlighting functions of metabolic enzymes and related metabolites broadly existing in cancer cells by dissecting each major metabolic pathway and its regulation of cellular behaviors.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapies such as PD-1 antibodies have produced significant clinical responses in treating a variety of human malignancies, yet only a subset of cancer patients benefit from such therapy. To improve the ICB efficacy, combinations with additional therapeutics were under intensive investigation. Recently, special dietary compositions that can lower the cancer risk or inhibit cancer progression have drawn significant attention, although few were reported to show synergistic effects with ICB therapies.

View Article and Find Full Text PDF

Agonists of glucocorticoid receptor (GR) are frequently given to cancer patients with platinum-containing chemotherapy to reduce inflammation, but how GR influences tumor growth in response to platinum-based chemotherapy such as cisplatin through inflammation-independent signaling remains largely unclear. Combined genomics and transcription factor profiling reveal that MAST1, a critical platinum resistance factor that reprograms the MAPK pathway, is upregulated upon cisplatin exposure through activated transcription factor GR. Mechanistically, cisplatin binds to C622 in GR and recruits GR to the nucleus for its activation, which induces MAST1 expression and consequently reactivates MEK signaling.

View Article and Find Full Text PDF

MYCN amplification is tightly associated with the poor prognosis of pediatric neuroblastoma (NB). The regulation of NB cell death by MYCN represents an important aspect, as it directly contributes to tumor progression and therapeutic resistance. However, the relationship between MYCN and cell death remains elusive.

View Article and Find Full Text PDF

is the most frequently mutated tumor suppressor gene in human cancer. The majority of mutations of p53 are missense mutations, leading to the expression of the full length p53 mutant proteins. Mutant p53 (Mutp53) proteins not only lose wild-type p53-dependent tumor suppressive functions, but also frequently acquire oncogenic gain-of-functions (GOF) that promote tumorigenesis.

View Article and Find Full Text PDF

Purpose: Although platinum compounds are the first-line treatment for ovarian cancer, the majority of patients relapse and develop resistance to treatment. However, the mechanism underlying resistance is unclear. The goal of our study is to decipher the mechanism by which a metabolic kinase, diacylglycerol kinase alpha (DGKA), confers platinum resistance in ovarian cancer.

View Article and Find Full Text PDF

Microtubule-associated serine/threonine kinase 1 (MAST1) is a central driver of cisplatin resistance in human cancers. However, the molecular mechanism regulating MAST1 levels in cisplatin-resistant tumors is unknown. Through a proteomics screen, we identified the heat shock protein 90 B (hsp90B) chaperone as a direct MAST1 binding partner essential for its stabilization.

View Article and Find Full Text PDF

How altered metabolism contributes to chemotherapy resistance in cancer cells remains unclear. Through a metabolism-related kinome RNAi screen, we identified inositol-trisphosphate 3-kinase B (ITPKB) as a critical enzyme that contributes to cisplatin-resistant tumor growth. We demonstrated that inositol 1,3,4,5-tetrakisphosphate (IP4), the product of ITPKB, plays a critical role in redox homeostasis upon cisplatin exposure by reducing cisplatin-induced ROS through inhibition of a ROS-generating enzyme, NADPH oxidase 4 (NOX4), which promotes cisplatin-resistant tumor growth.

View Article and Find Full Text PDF

Platinum-based chemotherapeutics represent a mainstay of cancer therapy, but resistance limits their curative potential. Through a kinome RNAi screen, we identified microtubule-associated serine/threonine kinase 1 (MAST1) as a main driver of cisplatin resistance in human cancers. Mechanistically, cisplatin but no other DNA-damaging agents inhibit the MAPK pathway by dissociating cRaf from MEK1, while MAST1 replaces cRaf to reactivate the MAPK pathway in a cRaf-independent manner.

View Article and Find Full Text PDF

The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity.

View Article and Find Full Text PDF

Loss of LKB1 is associated with increased metastasis and poor prognosis in lung cancer, but the development of targeted agents is in its infancy. Here we report that a glutaminolytic enzyme, glutamate dehydrogenase 1 (GDH1), upregulated upon detachment via pleomorphic adenoma gene 1 (PLAG1), provides anti-anoikis and pro-metastatic signals in LKB1-deficient lung cancer. Mechanistically, the GDH1 product α-KG activates CamKK2 by enhancing its substrate AMPK binding, which contributes to energy production that confers anoikis resistance.

View Article and Find Full Text PDF

Tumour cells secrete exosomes that are involved in the remodelling of the tumour-stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Chaoyun Pan"

  • - Chaoyun Pan's recent research focuses on the metabolic reprogramming of cancer cells, particularly how fatty acid oxidation and amino acid catabolism influence tumor metastasis and chemotherapy sensitivity in various types of cancers, including cervical and ovarian cancers.
  • - Significant findings from Pan's studies highlight that increased fatty acid oxidation supports lymph node metastasis in cervical cancer, while suppression of translesion DNA synthesis via tyrosine catabolism enhances the effectiveness of chemotherapy in epithelial ovarian cancer.
  • - Additionally, Pan's work emphasizes the role of specific mitochondrial factors, like succinyl-CoA ligase ADP-forming subunit beta, in promoting cancer metastasis, indicative of the complex interplay between cellular metabolism and cancer progression.*