This paper developed a radish disease detection system based on a hybrid attention mechanism, significantly enhancing the precision and real-time performance in identifying disease characteristics. By integrating spatial and channel attentions, this system demonstrated superior performance across numerous metrics, particularly achieving 93% precision and 91% accuracy in detecting radish virus disease, outperforming existing technologies. Additionally, the introduction of the hybrid attention mechanism proved its superiority in ablation experiments, showing higher performance compared to standard self-attention and the convolutional block attention module.
View Article and Find Full Text PDFBackground: A successful immune response against tumors depends on various cellular processes. Hence, there is an urgent need to construct a proficient nanoplatform for immunotherapy that can concurrently regulate the activities of various cells participating in the immune process. We have developed zeolitic imidazolate framework-8 (ZIF-8) formula, with good pH sensitivity, which is conducive to the release of drugs in the tumor site (acidic environment) and significantly improves immunotherapy.
View Article and Find Full Text PDFEcotoxicol Environ Saf
June 2024
Polystyrene nanoparticles are emerging as contaminants in freshwater environments, posing potential risks to amphibians exposed to extended periods of water contamination. Using tadpoles as a model, this study aimed to evaluate the toxicity of PS NPs. Pyrolysis-gas chromatography-tandem mass spectrometry (Py-GCMS) analysis revealed a concentration-dependent increase in polystyrene nanoparticles (PS NPs) levels in tadpoles with escalating exposure concentrations.
View Article and Find Full Text PDFBackground: Canine inflammatory mammary carcinoma (CIMC) has a high incidence of metastasis, high lethality, and poor prognosis, which needs novel adjuvant agents. Tetramethylpyrazine-Rhein Derivative (TRD) has been shown to have antitumor activity, which is a potential research direction for CIMC.
Purpose: This study evaluated the efficacy of TRD on CIMC in vitro and in vivo, and provided possibilities for the application of active compounds in traditional Chinese medicine.
Background And Purpose: Canine mammary tumors are the most common tumor disease of female dogs, and adjuvant chemotherapy often results in multi-drug resistance. Currently, the mechanisms underlying the development of tumor multi-drug resistance are unclear. The translation of research applications that can be used to effectively overcome tumor resistance is similarly hampered.
View Article and Find Full Text PDFMucin 1 (MUC1), a transmembrane protein, is closely associated with the malignancy and metastasis of canine mammary tumors; however, the role of overexpressed MUC1 in the development of cancer cells and response to drug treatment remains unclear. To address this question, we developed a new canine mammary tumor cell line, CIPp-MUC1, with an elevated expression level of MUC1. In vitro studies showed that CIPp-MUC1 cells are superior in proliferation and migration than wild-type control, which was associated with the upregulation of PI3K, p-Akt, mTOR, Bcl-2.
View Article and Find Full Text PDFObjective: Fatal central nervous system (CNS) malformation is one of the most common congenital malformations, and is an important cause of infant mortality. Ultrasound diagnostic technology has the advantages of fast, safe, economic, convenient and real-time dynamic imaging, and it is the first choice for imaging diagnosis of the foetus. This paper studies the diagnosis of fatal central nervous system malformations based on prenatal Doppler ultrasound, and further accumulates clinical experience for prenatal diagnosis.
View Article and Find Full Text PDFA simple method combing Mn(2+) doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn(2+) doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn(2+) concentration, reaching the climate at 5% Mn(2+).
View Article and Find Full Text PDFComplex multiphase waste system purification, as one of the major challenges in many industrial fields, urgently needs an efficient one-step purification method to remove several pollutants simultaneously and efficiently. Multi-functionalized magnetic nanoparticles, Fe3O4@SiO2-MPS-AM-DMC-AMPS, were facilely prepared via a one-pot in situ polymerization of three different functional monomers, AM, DMC, and AMPS, on a Fe3O4@SiO2-MPS core-shell structure. The multi-functionalized magnetic nanoparticles (MNPs) are proven to be a highly effective purification agent for oilfield wastewater, an ideal example of industrial complex multiphase waste system containing cations, anions, and organic pollutants.
View Article and Find Full Text PDFA new phenylboronic acid based gelator was developed to prepare low-molecular-weight organogel (LMOG), which could interact with several solvents to assemble into a three-dimensional nanofiber network. (1)H NMR spectroscopy study suggests that the driving force for the gelation includes hydrogen bonding and π-π stacking. Evaluated by UV-spectroscopy, the gel showed a prompt initial response to glucose at low concentration of 0.
View Article and Find Full Text PDFA novel conjugate for rosuvastatin has been prepared by a coupling reaction between rosuvastatin and dextran. The dextran-rosuvastatin conjugates (DRC) were characterized by FT-IR, NMR, and XRD. And the resulting DRC self-assembled into microparticles by controlled slow exchange of solvents applying dialysis.
View Article and Find Full Text PDF