Tuberculosis (TB) is a chronic infectious disease caused by (Mtb) infection, with the highest single-cause mortality. Monocarboxylate transporter 4 (Mct4) transports intracellular lactate outside, but its role in regulating host immune response against Mtb infection remains unknown. Mct4 expression was upregulated in Mtb-infected macrophages and in patients with TB.
View Article and Find Full Text PDFTuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment.
View Article and Find Full Text PDFTuberculosis, caused by (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human β-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity.
View Article and Find Full Text PDFTuberculosis has the highest mortality rate worldwide for a chronic infectious disease caused by a single pathogen. RNA-binding proteins (RBPs) are involved in autophagy - a key defense mechanism against Mycobacterium tuberculosis (M. tuberculosis) infection - by modulating RNA stability and forming intricate regulatory networks.
View Article and Find Full Text PDFInnate immune signaling in macrophages during viral infection is regulated by ISGylation, the covalent attachment of the ubiquitin-like protein interferon-stimulated gene 15 (ISG15) to protein targets. Here, we explored the role of ISGylation in the macrophage response to infection with . In human and mouse macrophages, the E3 ubiquitin ligases HERC5 and mHERC6, respectively, mediated the ISGylation of the phosphatase PTEN, which promoted its degradation.
View Article and Find Full Text PDFObjective: Tuberculosis is the leading killer among the chronic single-source infectious diseases. Mycobacterium tuberculosis can induce necrotic-dominant multiple modes of cell death in macrophages, which accelerates bacterium dissemination and expands tissue injury in host lungs. Mining drugs to counteract Mycobacterium tuberculosis-induced cell death would be beneficial to tuberculosis patients.
View Article and Find Full Text PDFObjectives And Design: Dendritic cells (DCs) are one of the key immune cells in bridging innate and adaptive immune response against Mycobacterium tuberculosis (Mtb) infection. Interferons (IFNs) play important roles in regulating DC activation and function. Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin) is one of the important IFN-stimulated genes (ISGs), and elicits host defense against infection.
View Article and Find Full Text PDFObjective: Mycobacterium tuberculosis /human immunodeficiency virus (MTB/HIV) coinfection has become an urgent problem in the field of prevention and control of infectious diseases in recent years. Adoptive cellular immunotherapy using antigen-specific T-cell receptor (TCR) engineered T cells which recognize the specific antigen artificially may have tremendous potential in anti-MTB/HIV coinfection. We have previously successfully identified a MTB Ag85B 199-207 and HIV-1 Env 120-128 peptide-bispecific TCR screened out from peripheral blood mononuclear cells of a HLA-A∗0201 + healthy individual and have further studied that how residues on the predicted complementarity determining region (CDR) 3 of the β chain contribute to the bispecific TCR contact with the peptide-MHC.
View Article and Find Full Text PDF(Mtb) infection is a long-standing public health threat, and the development of host-directed therapy for eradicating Mtb infection requires better insights into Mtb-host interactions. Viperin [virus-inhibitory protein, endoplasmic reticulum-associated, interferon (IFN) inducible] is an IFN-inducible protein with broad antiviral activities. Here, we demonstrated that Viperin was increased in abundance in patients with lymphatic and pulmonary tuberculosis (TB).
View Article and Find Full Text PDFBackground: As deubiquitinases (DUBs), ubiquitin C-terminal hydrolase (UCH)-L1 has been shown to play a crucial role in regulating diverse biological processes. However, its function in macrophage polarization remains unclear.
Methods: We performed in vivo and in vitro experiments to investigate the role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a kind of DUBs, in macrophage differentiation by using UCHL1-deficiency mice.
Tuberculosis (TB) caused by (Mtb) infection is the deadliest infectious disease and a global health problem. Macrophages (Mφs) and neutrophils that can phagocytose Mtb represent the first line of immune response to infection. Glycogen synthase kinase-3α/β (GSK-3α/β) represents a regulatory switch in host immune responses.
View Article and Find Full Text PDFthe pathogen that causes tuberculosis, exhibits complex host-pathogen interactions. Pattern recognition receptors and their downstream signaling pathways play crucial roles in determining the outcome of infection. In particular, the scaffold protein β-arrestin 2 mediates downstream signaling of G protein-coupled receptors.
View Article and Find Full Text PDFVitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti-inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti-inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine-1-phosphate (S1P) in a S1P lyase (SPL)-dependent manner in macrophages.
View Article and Find Full Text PDFObjectives: Interferons (IFNs) play multifunctional roles in host defense against infectious diseases by inducing IFN-stimulated genes (ISGs). However, little is known about how ISGs regulate host immune response to Mycobacterium tuberculosis (Mtb) infection, the major cause of tuberculosis (TB).
Methods: We thus profiled the potential effects and mechanisms of eight Mtb-induced ISGs on Mtb infection by RNA interference in human macrophages (Mφs) derived from peripheral blood monocytes (hMDMs) and THP-1 cell line derived Mφs (THP-1-Mφs).
, which primarily infects mononuclear phagocytes, remains the leading bacterial cause of enormous morbidity and mortality because of bacterial infections in humans throughout the world. The IL-1 family of cytokines is critical for host resistance to As a newly discovered subgroup of the IL-1 family, although IL-36 cytokines have been proven to play roles in protection against infection, the antibacterial mechanisms are poorly understood. In this study, we demonstrated that IL-36γ conferred to human monocyte-derived macrophages bacterial resistance through activation of autophagy as well as induction of WNT5A, a reported downstream effector of IL-1 involved in several inflammatory diseases.
View Article and Find Full Text PDFObjectives: Although it has been reported that Interferon regulatory factor 1 (IRF1) inhibits Mycobacterium tuberculosis (Mtb) infection via inducible nitric oxide synthase (iNOS) in mice, how it counteracts with mycobacterial infection in human remains largely obscure. This study was conducted to investigated the effect of IRF1 on Mtb infection in human macrophages (Mϕs).
Methods: We thus investigated the IRF1 expression by using PBMC and monocytes of pulmonary tuberculosis (TB) patients and human monocyte-derived macrophages (hMDMs) and THP-1-derived macrophages (THP-1-Mϕ).
Tuberculosis (TB) caused by (Mtb) represents one of the greatest threats to human health., Interferons (IFNs) in combination with the first-line of anti-TB drugs have been used for treating TB for decades in the clinic, but how Mtb infection regulates interferon-stimulated genes (ISGs) in human macrophages (Mϕs) remains unknown. In this study, we investigated the expression-signature and associated innate signaling mechanisms of ISGs in Mtb-infected human monocyte-derived Mϕs (hMDMs) and THP-1-derived Mϕs (THP-1-Mϕs).
View Article and Find Full Text PDFγδ T cells are a subset of unconventional T cells that serve a critical role in infectious diseases and various types of cancer. Cell therapy with genetically‑modified γδ T cells is regarded as a promising tool for tumor treatment. However, since γδ T cells constitute a minority of T cells, their large‑scale expansion is difficult to realize in an efficient and cost‑effective manner.
View Article and Find Full Text PDFIt is known that vitamin B1 (VB1) has a protective effect against oxidative retinal damage induced by anti-tuberculosis drugs. However, it remains unclear whether VB1 regulates immune responses during (MTB) infection. We report here that VB1 promotes the protective immune response to limit the survival of MTB within macrophages and through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ).
View Article and Find Full Text PDFNLRC3, a member of the NLR family, has been reported as a negative regulator of inflammatory signaling pathways in innate immune cells. However, the direct role of NLRC3 in modulation of CD4+ T-cell responses in infectious diseases has not been studied. In the present study, we showed that NLRC3 plays an intrinsic role by suppressing the CD4+ T cell phenotype in lung and spleen, including differentiation, activation, and proliferation.
View Article and Find Full Text PDFThe mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5) can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with (MTB) strain H37Rv and the therapeutic potential of VB5 with tuberculosis.
View Article and Find Full Text PDFAbsence of effective therapeutic methods for avascular necrosis of femoral head (ANFH) is still perplexing the world's medical community. Bone marrow mesenchymal stem cells (BMSCs) adoptive cell therapy combined with core decompression is a promising modality, which is highly dependent on the cellular activities of BMSCs. Hepatocyte growth factor (HGF) is a survival factor for BMSCs, yet the underlying mechanism is not fully elucidated.
View Article and Find Full Text PDF/human immunodeficiency virus (MTB/HIV) coinfection presents a special challenge to the prevention and treatment of tuberculosis and HIV/AIDS. Adoptive transfer of high-affinity T cell receptor (TCR) gene-modified T cells against MTB and HIV antigens is a promising approach to treating MTB/HIV coinfected patients whose cellular immunity is obviously disordered. We have previously successfully identified that a bispecific TCR screened out from peripheral blood mononuclear cells of a HLA-A*0201 healthy individual using the complementarity determining region 3 (CDR3) spectratype analysis recognizes both MTB Ag85B and HIV-1 Env peptide.
View Article and Find Full Text PDF