Publications by authors named "Chaoying Mao"

In this study, Sylgard 184 silicone rubber (SylSR) matrix composites with shear thickening fluid (STF) microcapsules (SylSR/STF) were fabricated. Their mechanical behaviors were characterized by dynamic thermo-mechanical analysis (DMA) and quasi-static compression. Their damping properties increased with the addition ofSTF into the SR in DMA tests and the SylSR/STF composites presented decreased stiffness and an obvious positive strain rate effect in the quasi-static compression test.

View Article and Find Full Text PDF

The spatiotemporal organization of complex fluids under flow can be strongly affected by incorporating solid particles. Here, we report that a monolayer of interfacially active microspheres preferentially wetted by the matrix phase can bridge droplets into vorticity-aligned bands in immiscible polymer blends at intermediate particle concentrations and low shear rates. Strong particle bridging ability and the formation of rigid anisotropic droplet bands with a negligible inertia effect in the Newtonian matrix are suggested to be responsible for the vorticity orientation of droplet bands during slow shear flow, which could be understood based on Jeffery orbit theory in the framework of fluid mechanics and strong confinement effect acted by shear walls and adjacent bands.

View Article and Find Full Text PDF

Surface function has an importance for the bioactivity of porous polymeric scaffolds. The goal of the present study is to immobilize highly bioactive chitosan (CS) onto the surface of porous composite scaffolds to accelerate bone regeneration. Porous poly(ε-caprolactone) (PCL)/bioactive glass (BG) composite scaffolds with strong anchor of CS were fabricated via mussel-inspired polydopamine (PDA) coating as a bridging layer.

View Article and Find Full Text PDF

The effect of particle parameters [aspect ratio (AR) and concentration] and flow conditions (gap spacing and shear rate) on droplet orientation deformation behavior in polystyrene (PS) particle-filled binary polymeric emulsions is investigated by using a rheo-optical technique and confocal microscopy. Interesting vorticity orientation behavior is achieved by tailoring experimental conditions to yield rigid anisotropic droplets during slow confined shear flow. PS ellipsoids with a high AR are found to reside both at the fluid interface in a monolayer side-on state and inside droplets, leading to the formation of rigid anisotropic droplets because of the interfacial/bulk jamming effect at appropriate particle concentrations.

View Article and Find Full Text PDF

We study the influence of particle shape on shear-induced droplet deformation in polymeric emulsions. During shearing, droplets become elongated and rotate periodically about their major axes while aligning along the vorticity direction in ellipsoid-filled emulsions, while similar behavior is not observed in the pristine, microsphere-filled or ellipsoid-filled inverse systems. Based on the Jeffery orbit theory, the formation of anisotropic droplets with extremely small Reynolds number due to arrested coalescence in Newtonian matrix and strong confinement effect are suggested to be responsible for the vorticity alignment of droplets during slow shearing.

View Article and Find Full Text PDF

The flow-induced spatial organization of the droplet phase in ternary polymeric emulsions consisting of two Newtonian fluids, namely polyisobutylene (PIB) and polydimethylsiloxane (PDMS), in the presence of a small amount of solid polystyrene (PS) microspheres are explored by direct flow visualization. The results suggest that the asymmetric affinities of interfacially located PS microspheres to two fluid components lead to diverse flow-induced morphologies in PIB/PDMS blends with different compositions. In 10/90 blends where microspheres are preferentially wetted by the PIB droplets, significantly promoted coalescence of PIB droplets is observed.

View Article and Find Full Text PDF