Publications by authors named "Chaoxian Lin"

This study investigates the molecular mechanisms by which extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSCs) promote M2 polarization of macrophages and thus reduce lung injury caused by sepsis. High-throughput sequencing was used to identify differentially expressed genes related to long non-coding RNA (lncRNA) in ADSC-derived EVs (ADSC-EVs) in sepsis lung tissue. Weighted gene co-expression network analysis (WGCNA) was employed to predict the downstream target genes of the lncRNA DLEU2.

View Article and Find Full Text PDF

Investigation on a competitive endogenous RNA (ceRNA) network attracted lots of attention due its function in cancer regulation. Here, we probed into the possible molecular mechanism of circSSPO/microRNA-6820-5p (miR-6820-5p)/kallikrein-related peptidase 8 (KLK8)/PKD1 network in the esophageal squamous cell carcinoma (ESCC). Following whole-transcriptome sequencing and differential analysis in collected ESCC tissue samples, circRNA-miRNA-mRNA regulatory network affecting ESCC was investigated.

View Article and Find Full Text PDF

Introduction: This study aimed to investigate the role of miR-214 in the bidirectional regulation of p53 and PTEN and its influence on myocardial fibrosis and cardiac mesenchymal transformation in mice with viral myocarditis (VMC).

Methods: The study established a VMC model in BALB/c mice by injecting them with the CVB3 virus intraperitoneally. Techniques such as ELISA, H&E staining, Masson staining, immunohistochemical staining, RT-qPCR, western blot, and dual-luciferase reporter gene assay were used to detect the expression levels of relevant factors in tissues and cells.

View Article and Find Full Text PDF

Monocyte-derived exosomes (Exos) have been implicated in inflammation-related autoimmune/inflammatory diseases via transferring bioactive cargoes to recipient cells. The purpose of this study was to investigate the possible effect of monocyte-derived Exos on the initiation and the development of acute lung injury (ALI) by delivering long non-coding RNA XIST. Key factors and regulatory mechanisms in ALI were predicted by bioinformatics methods.

View Article and Find Full Text PDF

Chemoresistance remains a major obstacle to the treatment of esophageal cancer (EC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) has recently been unveiled to correlate with the regulation of drug resistance in EC. This study aimed to investigate the physiological mechanisms by which exosome-encapsulated lncRNA myocardial infarction-associated transcript (MIAT) derived from tumor cells might mediate the paclitaxel (PTX) resistance of EC cells.

View Article and Find Full Text PDF

5-Fluorouracil (5-FU) resistance is one of the main causes for treatment failure in esophageal cancer (EC). Here, we intended to elucidate the mechanism of tumor-derived extracellular vesicles (TEVs)-encapsulated long noncoding RNAs (lncRNAs) AC116025.2 in 5-FU resistance in EC.

View Article and Find Full Text PDF

Background: Perturbation of tryptophan (TRP) metabolism contributes to the immune escape of cancer; however, the explored TRP metabolites are limited, and their efficacy in clarifying the susceptibility and progression of esophageal cancer (EC) remains ambiguous. Our study sought to evaluate the effects of the TRP metabolic profile on the clinical outcomes of EC using a Chinese population cohort; and to develop a risk prediction model targeting TRP metabolism.

Method: A total of 456 healthy individuals as control subjects and 393 patients with EC who were followed up for one year as case subjects were enrolled.

View Article and Find Full Text PDF

The kynurenine pathway, in which tryptophan is metabolized to kynurenine and kynurenic acid, has been linked to depression. A rapid and highly reproducible liquid-chromatography-tandem mass spectrometry (LC-MS/MS) method were established for determining tryptophan, kynurenine and kynurenic acid in human serum. Biological samples were precipitated with methanol before separation on an Agilent Eclipse XDB-C18.

View Article and Find Full Text PDF

Droperidol, an antidopaminergic drug clinically used as an antiemetic and antipsychotic, has been reported to induce cardiac toxicity in patients. Due to the close relationship between drug metabolism and efficiency and toxicity, the present study aims to investigate the phase I metabolites using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The NADPH-supplemented phase I incubation system was used to elucidate the in vitro phase I metabolites.

View Article and Find Full Text PDF