The house fly, Musca domestica, is a pest of livestock, transmits pathogens of human diseases, and is a model organism in multiple biological research areas. The first house fly genome assembly was published in 2014 and has been of tremendous use to the community of house fly biologists, but that genome is discontiguous and incomplete by contemporary standards. To improve the house fly reference genome, we sequenced, assembled, and annotated the house fly genome using improved techniques and technologies that were not available at the time of the original genome sequencing project.
View Article and Find Full Text PDFBackground: γ-Amino butyric acid (GABA) antagonists are proven targets for control of lepidopteran and other pests. New heterocyclic compounds with high insecticidal activity were discovered using a competitive-intelligence-inspired scaffold-hopping approach to generate analogs of fipronil, a known GABA antagonist. These novel aryl heterocyclic amines (AHAs) displayed broad-spectrum activity on a number of chewing insect pests.
View Article and Find Full Text PDFThe sulfoximines, as exemplified by sulfoxaflor ([N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl]ethyl]-λ(4)-sulfanylidene] cyanamide] represent a new class of insecticides. Sulfoxaflor exhibits a high degree of efficacy against a wide range of sap-feeding insects, including those resistant to neonicotinoids and other insecticides. Sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and functions in a manner distinct from other insecticides acting at nAChRs.
View Article and Find Full Text PDFStrains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6.
View Article and Find Full Text PDFRNA interference has been widely used to reduce the quantity of the proteins encoded by the targeted genes. A constitutively active, dominant allele of trp, TrpP365, causes massive degeneration of photoreceptors through a persistent and excessive Ca2+ influx. Here we show that a substantial reduction of the TRP channel protein by RNAi in TrpP365 heterozygotes completely rescues the neuronal degeneration and significantly improves the light-elicited responses of the eye.
View Article and Find Full Text PDFA large number of mutants in the norpA gene, which encodes the phospholipase C (PLC) involved in Drosophila phototransduction, is available for the investigation of the effects of specific amino acid substitutions in PLC on biochemical and electrophysiological properties of these mutants. Of the 47 norpA mutants screened for PLC protein content, all but one (H43) displayed drastically decreased amounts of the protein suggesting that almost any mutational alteration has a deleterious effect on the integrity of the protein. Three new amino acids were identified in the catalytic domains X and Y that are important for PLC catalytic activity and the generation of photoreceptor responses (ERG).
View Article and Find Full Text PDFWe discuss in this chapter the role of Ca2+ homeostasis in maintaining the structural integrity of photoreceptor cells in Drosophila. Both insufficient and excessive amounts of Ca2+ in photoreceptor cells appear to lead to cell degeneration. Because one of the two classes of light-sensitive channels in Drosophila photoreceptors is highly Ca2+-permeable, how well this class of channels functions can profoundly affect Ca2+ homeostasis.
View Article and Find Full Text PDFThe trp gene encodes subunits of a highly Ca(2+)-permeable class of light-activated channels of Drosophila photoreceptors. The recently characterized mutation in this gene, Trp(P365), is semidominant and causes massive degeneration of photoreceptors by making the TRP channel constitutively active. We show that a single amino acid change, Phe-550 to Ile, near the beginning of the fifth transmembrane domain of TRP channel subunits is necessary to induce, and sufficient to closely mimic, the original mutant phenotypes of Trp(P365).
View Article and Find Full Text PDF