Publications by authors named "Chaoxi Zeng"

Legumes are a widespread and cheap source of starch. However, legume starches are prone to retrogradation in applications. Therefore, enhancing the resistance to retrogradation is important to ensure the quality of starch products.

View Article and Find Full Text PDF

Background: The Pickering emulsion delivery technique is widely acknowledged for its efficacy in serving as a carrier that can encapsulate functional components effectively. Previous studies have shown significant differences in the stability of Pickering emulsions composed of different oil phases and in the bioaccessibility of the encapsulated functional ingredients. This study therefore investigated the effects of different carrier oils in the betulin self-stabilized water-in-oil (W/O) Pickering emulsion on the stability of the emulsion and bioaccessibility of betulin.

View Article and Find Full Text PDF

Pentacyclic triterpenes have attracted much attention because of their many bioactivities, but their bioaccessibility is low. Oleanolic acid (OA) was used in this study as a typical edible pentacyclic triterpene. In this work, we proposed an OA interfacial delivery model based on W/O Pickering emulsion, and investigated the effects of different oil types on the emulsion properties and OA bioaccessibility of the OA W/O Pickering emulsion interfacial delivery system (EIDS).

View Article and Find Full Text PDF

Pentacyclic triterpenes show potential as oleogelators, but their combination with various vegetable oils has limited research. This study selected linseed, rapeseed, sunflower, coconut, and palm oils to combine with the triterpenoid compound β-amyrin for the preparation of oleogels. The stability, crystal network structure, and other properties of each oleogel were evaluated.

View Article and Find Full Text PDF

Self-constructed water-in-oil emulsions can be stabilized by a natural pentacyclic triterpenoid, betulin. A higher betulin concentration (3%) results in smaller emulsion droplet sizes. Microscopy, confocal laser scanning microscopy and rheology indicate that the stabilizing mechanism is attributed to betulin crystals on the emulsion interface and within the continuous phase, thereby enabling excellent freeze/thaw and thermal stability.

View Article and Find Full Text PDF

This paper reports the preparation and characterization of gelatin-cassava starch microspheres using the water-in-water emulsion technique. The effects of different weight ratios (10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5) of starch to gelatin on the morphology, structure, thermal properties, and stability of microspheres were investigated. The morphology results showed that most microspheres had spherical shapes and smooth surfaces.

View Article and Find Full Text PDF

Exploring the effect of bile salts on the properties of emulsion carriers containing hydrophobic bioactive compounds is particularly critical to understanding the stability and bioavailability of these hydrophobic bioactive compounds in the digestive process. In this study, the effects of bile salts on the stability and digestive characteristics of the ursolic acid (UA) self-stabilized water-in-oil (W/O) emulsion were investigated via static and dynamic (with or without enzyme) in vitro simulated digestive systems. The results showed that under the static system, the basic conditions had less interference, while the bile salts had a significant effect on the appearance and microstructure of the emulsion.

View Article and Find Full Text PDF

Astilbin, a natural flavonoid, possesses multiple functionalities, while the poor bioavailability seriously restricts its application in functional food and medicine. Therefore, in this study, a natural deep eutectic solvent (NaDES) with choline chloride: lactic acid (CHCL-LAC) is selected to deliver astilbin by evaluating the bioaccessibility and antioxidant capacity during in vitro gastrointestinal digestion, and the inhibitory effect with underlying mechanism of astilbin-CHCL-LAC against α-amylase/α-glucosidase were investigated. The CHCL-LAC showed significant high astilbin bioaccessibility (84.

View Article and Find Full Text PDF

Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models.

View Article and Find Full Text PDF

Critical flavonoids from have huge potential bioactivities on hypoglycemic. A multi-index comprehensive assessment based on Analytic Hierarchy Process (AHP) method was performed to optimize the extraction process of flavonoids from , which taking dihydromyricetin, taxifolin, myricetin and quercetin as indexes, and, then, an in vitro simulated gastrointestinal digestion model was established to investigate the changes of flavonoids contents and their antioxidant capacity before and after digestion. The results showed that three influence factors acted significantly with the order of ethanol concentration > solid-liquid ratio > ultrasound time.

View Article and Find Full Text PDF

Redox balance is essential to maintain the body's normal metabolism. Once disrupted, it may lead to various chronic diseases, such as diabetes, neurodegenerative diseases, cardiovascular diseases, inflammatory diseases, cancer, aging, etc. Oxidative stress can cause or aggravate a series of pathological processes.

View Article and Find Full Text PDF

Extracting ursolic acid (UA) from plant resources using organic solvents is incompatible with food applications. To address this, in this study, 15 edible hydrophobic deep eutectic solvents (HDESs) were prepared to extract UA from apple peel, the extraction conditions were optimized, and the optimization strategies were compared. It was found that the solubility of UA in the HDESs can be 9 times higher than the traditional solvent such as ethanol.

View Article and Find Full Text PDF

Theasaponin derivatives, which are reported to exert antitumor activity, have been widely reported to exist in edible plants, including in the seed cake of (), which is extensively grown in south of China. The purpose of this study was to isolate new theasaponin derivatives from seed cake and explore their potential antitumor activity and their underlying molecular mechanism. In the present study, we first isolated and identified four theasaponin derivatives (compounds , , and ) from the total aglycone extract of the seed cake of by utilizing a combination of pre-acid-hydrolysis treatment and activity-guided isolation.

View Article and Find Full Text PDF

Insulin resistance (IR) is fundamental to the development of type 2 diabetes (T2D), and altered mitochondrial function and abnormal lipid distribution are closely associated with IR or T2D. Excess oxidative stress-induced mitochondrial damage leads to an imbalance in redox homeostasis, which is considered the major contributor to the progression of diabetes. A key cellular defense mechanism, namely, the nuclear factor-E2 p45-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, plays an essential protective role in combating excess oxidative stress.

View Article and Find Full Text PDF

The waterborne Vibrio parahaemolyticus can cause acute gastroenteritis, wound infection, and septicemia in humans. Pollution of heavy metals in aquatic environments is proposed to link high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution and heavy metal tolerance mechanism of V.

View Article and Find Full Text PDF

Glycolipid metabolic disorder is a serious threat to human health. Dark tea is a kind of traditional Chinese tea, which may regulate the glycolipid metabolic disorders. Dark tea extract (DTE) is the water extraction obtained from dark tea.

View Article and Find Full Text PDF

In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor.

View Article and Find Full Text PDF

Metabolic syndrome (MS) is a metabolic disorder that arises from the increasing prevalence of obesity. The pathophysiology seems to be largely attributable to the imbalance of lipid and glucose metabolism, redox signaling pathways, and gut microbiota. The increased syndromes, such as type 2 diabetes and cardiovascular disease demands natural therapeutic attention for those at high risk.

View Article and Find Full Text PDF

Instant dark tea (IDT) is a new product gaining increasing attention because it is convenient and can endow significant health benefit to consumers, which is partially attributed to its high concentration of functional ingredients. However, the molecular mechanism underlying its regulatory effect on hyperlipidaemia is rarely studied. In this study, we performed omics and molecular verification in high-fat diet (HFD)-fed rat, aiming to reveal the mechanism and provide molecular evidence.

View Article and Find Full Text PDF

Background: Phytosterols are considered to be one of the most promising gelators for obtaining oleogel because of their additional health benefits and natural coexist with vegetable oils. Previous studies have confirmed that individual phytosterols are not capable of structuring vegetable oils unless they act synergistically with other components. However, based on the self-assembly properties of stigmasterol (ST) in organic solvents, we speculate that it can also structure vegetable oils as a gelator alone.

View Article and Find Full Text PDF

In this study, we report a top-down approach to fabricate starch nanoplatelets (SNPs) based on a deep eutectic solvent (DES) comprised of choline chloride and oxalic acid dihydrate. When subjecting waxy maize starch (WMS) to 2 h of DES treatment, the SNPs of oxalate half-ester were successfully fabricated. The formation mechanism of SNPs was studied by monitoring the changes in nanoplatelet morphology, amylopectin chain distribution, long-range crystallinity, and semi-crystalline lamellar structure of the DES-treated WMS at various treatment times.

View Article and Find Full Text PDF

Garlic organic sulfides are dietary bioactive components with multiple biofunctions to prevent chronic diseases/inflammation and promote human health. DADS (diallyl disulfide), DATS (diallyl trisulfide), and DTS (diallyl tetrasulfide) are typical organic sulfides with similar structures from garlic. However, the structure-activity relationship of garlic organic sulfides remained unknown.

View Article and Find Full Text PDF

In this study, stable water-in-oil emulsions stabilized solely by a naturally occurring steroidal sapogenin was reported for the first time. The results show that a concentrated emulsion with an internal water ratio of up to 60% can be obtained with only 3% of diosgenin concentration. The concentration of diosgenin had a significant effect on the microstructure and rheological properties of the emulsions.

View Article and Find Full Text PDF

Background: Starch nanocrystals have received considerable attention, due to their biodegradability, nontoxicity and renewable and abundant sources. The objective of this research is to compare the morphology, physicochemical characteristics and rheological properties of native (NSNC) and waxy rice starch nanocrystals (WSNC).

Results: Both NSNC and WSNC exhibited a platelet-like shape, and they tended to show square-like platelet morphology with increasing initial amylopectin content.

View Article and Find Full Text PDF

As a possible alternative to hydrogels, eutectogels are formed by gelling natural deep eutectic solvents (NADESs) that may be closer to the intracellular environment than pure water. This study successfully prepared highly biodegradable and thermostable eutectogels based on polysaccharides and NADESs, and studied the possible mechanism of eutectogel formation. The results show that these eutectogels displayed excellent thermostability as both the ' and '' values remained constant in the temperature range of 60-110 °C, and the weight of the eutectogels remained almost unchanged when held at 80 °C for 10 hours.

View Article and Find Full Text PDF