Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples.
View Article and Find Full Text PDFColorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer.
View Article and Find Full Text PDFThe dual epidemic of obesity and diabetes mellitus is becoming an important worldwide public health issue. "Diabesity" is the term used to describe the combined detrimental health effects of both diabetes mellitus and obesity/overweight. Currently, food-derived bioactive compounds are suggested to alleviate diabesity.
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the most commonly diagnosed cancers with high mortality rate due to its poor diagnosis in the early stage. Here, we report a urinary metabolomic study on a cohort of CRC patients ( =67) and healthy controls ( =21) using ultraperformance liquid chromatography triple quadrupole mass spectrometry. Pathway analysis showed that a series of pathways that belong to amino acid metabolism, carbohydrate metabolism, and lipid metabolism were dysregulated, for instance the glycine, serine and threonine metabolism, alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, glycolysis, and TCA cycle.
View Article and Find Full Text PDFAnaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process.
View Article and Find Full Text PDFDynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction.
View Article and Find Full Text PDFComposting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process.
View Article and Find Full Text PDFIt is known that an increase of COD/N ratio can result in an enhanced removal of nutrients in membrane bioreactors (MBRs); however, impacts of doing so on membrane filtration performance remain unclear. In this work, comparison of membrane filtration performance, microbial community, and microbial products under low temperature was carried out in anoxic/oxic (A/O) MBRs with COD/N ratios of 9.9 and 5.
View Article and Find Full Text PDFAnaerobic co-digestion (A co-D) performance of Phragmites australis, feces and kitchen waste with addition of clinoptilolite (one main kind of zeolite) was investigated to evaluate the improvement of biogas/methane production and internal mechanism of nitrogen and organics control. A better biogas/methane production was observed by 10% clinoptilolite (v/v) than bentonite and diatomite, with the shortest lag phase of 0.070d(-1), the max rate of 15.
View Article and Find Full Text PDFThe enhancement of bio-hydrogen production from kitchen waste by a short-time hydrothermal pretreatment at different temperatures (i.e., 90°C, 120°C, 150°C and 200°C) was evaluated.
View Article and Find Full Text PDFThis study investigated the impact of composting substrate types on the bacterial community structure and dynamics during composting processes. To this end, pig manure (PM), chicken manure (CM), a mixture of PM and CM (PM + CM), and a mixture of PM, CM and anaerobic digestion residue (ADR) (PM + CM + ADR) were selected for thermophilic composting. The bacterial community structure and dynamics during the composting process were detected and analysed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) coupled with a statistic analysis.
View Article and Find Full Text PDFA rapid and accurate ion chromatography (IC) method (limit of detection as low as 0.06 mg L(-1)) for fosfomycin concentration determination in pharmaceutical industrial wastewater was developed. This method was compared with the performance of high performance liquid chromatography determination (with a high detection limit of 96.
View Article and Find Full Text PDFTwo bioelectrochemical membrane bioreactors (MBRs) developed by integrating microbial fuel cell and MBR technology were operated under closed-circuit and open-circuit modes, and high-throughput 454 pyrosequencing was used to investigate the effects of the power generation on the microbial community of bio-anode and bio-cathode. Microbes on the anode under open-circuit operation (AO) were enriched and highly diverse when compared to those on the anode under closed-circuit operation (AC). However, among the cathodes the closed-circuit mode (CC) had richer and more diverse microbial community compared to the cathode under open-circuit mode (CO).
View Article and Find Full Text PDFIn this study, a pilot-scale anaerobic dynamic membrane bioreactor was operated for 142days for treating landfill leachate. Under stable operation, average COD removal efficiency of 62.2% was achieved when the reactor was fed with the raw leachate containing total ammonium concentration above 3000mg/L and COD above 13,000mg/L.
View Article and Find Full Text PDFThis study was conducted to assess the degree of humification in dissolved organic matter (DOM) from different composts, and their environmental impact after soil amending based on fluorescence measurements (emission, excitation, synchronous scan, and excitation-emission matrix [EEM]). The compost sources studied included dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), and peat (P). Conventional and EEM fluorescence spectroscopy indicated that the DOM of these composts contained compounds similar in structure but comparisons between conventional fluorescence parameters and fluorescence regional integration of EEM fluorescence spectra showed that the DOM was different in degree of humification.
View Article and Find Full Text PDFIn this study, an approach using influent COD/N ratio reduction was employed to improve process performance and nitrification efficiency in a membrane bioreactor (MBR). Besides sludge reduction, membrane fouling alleviation was observed during 330 d operation, which was attributed to the decreased production of soluble microbial products (SMP) and efficient carbon metabolism in the autotrophic nitrifying community. 454 high-throughput 16S rRNA gene pyrosequencing revealed that the diversity of microbial sequences was mainly determined by the feed characteristics, and that microbes could derive energy by switching to a more autotrophic metabolism to resist the environmental stress.
View Article and Find Full Text PDFIn this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area.
View Article and Find Full Text PDF