The imbalance between endogenous and exogenous healing is the fundamental reason for the poor tendon healing. In this study, a Janus patch was developed to promote endogenous healing and inhibit exogenous healing, leading to improved tendon repair. The upper layer of the patch is a poly(dl-lactide--glycolide)/polycaprolactone (PLGA/PCL) nanomembrane (PMCP-NM) modified with poly(2-methylacryloxyethyl phosphocholine) (PMPC), which created a lubricated and antifouling surface, preventing cell invasion and mechanical activation.
View Article and Find Full Text PDFWith the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration methods face challenges in noise, low overlap, uneven density, and large data scale, which limits the further application of point cloud registration in actual scenes. With the above deficiency, point cloud registration methods based on deep learning technology gradually emerged.
View Article and Find Full Text PDFThe heart valve is crucial for the human body, which directly affects the efficiency of blood transport and the normal functioning of all organs. Generally, decellularization is one method of tissue-engineered heart valve (TEHV), which can deteriorate the mechanical properties and eliminate allograft immunogenicity. In this study, removable polyvinyl alcohol (PVA) is used to encapsulate decellularized porcine heart valves (DHVs) as a dynamic template to improve the processability of DHVs, such as suturing.
View Article and Find Full Text PDFEnhancing the mechanical properties and cytocompatibility of decellularized heart valves is the key to promote the application of biological heart valves. In order to further improve the mechanical properties, the electrospinning and non-woven processing methods are combined to prepare the polylactic acid (PLA)/decellularized heart valve nanofiber-reinforced sandwich structure electrospun scaffold. The effect of electrospinning time on the performance of decellularized heart valve is investigated from the aspects of morphology, mechanical properties, softness, and biocompatibility of decellularized heart valve.
View Article and Find Full Text PDFInt J Biol Macromol
September 2022
Biodegradable porous scaffolds with different structure, porosity, and strength play a critical role in the repair and regeneration of defects in bone tissue engineering by changing the proliferation condition for cell. In this study, polylactic acid (PLA) scaffold with directional porous structure is designed and fabricated using the method of ice template and phase inversion for speeding up bone repair by promoting the growth and proliferation of bone cells. The morphology, mechanical properties, hydrophilicity, and wicking properties of PLA scaffolds were characterized by scanning electron microscope, universal testing machine, contact angle tester and wicking rate test, respectively.
View Article and Find Full Text PDFProtein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy.
View Article and Find Full Text PDFPhase inversion induced by water droplets has garnered attention in the field of polymer science as a novel method for preparing porous membranes. This study investigates the effect of the porous structure of poly (lactic acid) (PLA) membranes prepared through phase inversion induced by water droplets at four different temperatures (25, 50, 75, and 100 °C) on the morphology and proliferation of 3T3 cells. The surface properties of the PLA porous membrane, including pore size, pore size distribution, surface roughness, surface hydrophilicity, and cytocompatibility with 3T3 cells, were evaluated.
View Article and Find Full Text PDFMulticomponent reactions (MCRs) are powerful tool for the construction of polyfunctional molecules in an operationally simple and atom-economic manner, and the discovery of novel MCRs requests various building blocks. Herein, triazenyl alkynes were disclosed as versatile building blocks in a multicomponent reaction with carboxylic acids, aldehydes and anilines to furnish β-amino amides with the achievement of high diastereoselectivity and structural diversity. In this process, triazenyl alkynes were bifunctional so that the alkyne moiety acts as C2 fragment and triazene serves as directing group to modulate the transition state thus achieving high diastereoselectivity, in consistence with DFT calculations.
View Article and Find Full Text PDFHerein we report a redox cyclization of amides and sulfonamides with nitrous oxide (NO) for the direct synthesis of heterocycles. Various amides and sulfonamides could undergo directed ortho metalation (DoM) by treatment with BuLi, and the lithium intermediate could be trapped by NO gas to achieve redox cyclization. NO serves as a N-atom donor to mediate the intramolecular coupling of lithium species toward heterocycle formation with free external oxidant.
View Article and Find Full Text PDFSepsis is a systemic inflammatory response to infection and includes severe sepsis, septic shock and death. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is one cell adhesion molecule expressed on platelets and leukocytes. It regulates platelet activation and mediates transendothelial migration of leukocytes, thus maintaining the integrity of the vasculature.
View Article and Find Full Text PDFZhonghua Xue Ye Xue Za Zhi
February 2014
Objective: To comprehensively analyze the clinical characteristics, treatment strategies and outcome of patients with thrombotic thrombocytopenic purpura (TTP).
Methods: A retrospective survey of 51 TTP patients confirmed in our database. Relevant statistical analyzes were performed by GraphPad Prism 5 software.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
August 2013
Hemophilia B (HB) is a recessive X-linked inherited disorder, the pathogenesis of HB is deficiency or functional abnormalities of coagulation factor IX, which is caused by F9 gene mutations. To explore the mechanism of its molecular pathology, 40 patients with HB were studied with polymerase chain reaction (PCR) and direct sequencing. The diagnosis of HB patients were based on clinical manifestation and deficient factor IX activity in plasma.
View Article and Find Full Text PDF