With the development of monitoring technology, the variety of ozone precursors that can be detected by monitoring stations has been increased dramatically. And this has brought a great increment of information to ozone prediction and explanation studies. This study completes feature mining and reconstruction of multi-source data (meteorological data, conventional pollutant data, and precursors data) by using a machine learning approach, and built a cross-stacked ensemble learning model (CSEM).
View Article and Find Full Text PDF