The mechanism of the dirhodium-catalyzed combined C-H functionalization/Cope rearrangement (CH/Cope) reaction discovered by the Davies group has been investigated with density functional theory (DFT) calculations and quasi-classical molecular dynamics (MD) simulations. Computations from the Davies group previously showed that there is a post-transition state bifurcation leading to a direct CH reaction and also to the CH/Cope product. While this work was in preparation, the Tantillo group and the Ess group independently reported quantum mechanical and molecular dynamics studies on the dirhodium-tetracarboxylate-catalyzed diazoester CH/Cope and CH insertion reactions with 1,3-cyclohexadiene and 1,4-cyclohexadiene, respectively.
View Article and Find Full Text PDFQuasi-classical molecular dynamics (MD) simulations were carried out to study the mechanism of iron porphyrin-catalyzed hydroxylation of ethylbenzene. The hydrogen atom abstraction from ethylbenzene by iron-oxo species is the rate-determining step, which generates the radical pair of iron-hydroxo species and the benzylic radical. In the subsequent radical rebound step, the iron-hydroxo species and benzylic radical recombine to form the hydroxylated product, which is barrierless on the doublet energy surface.
View Article and Find Full Text PDF