The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality.
View Article and Find Full Text PDFNext-generation energy storage devices should be soft, stretchable, and self-healable. Previously reported self-healable batteries mostly possess limited stretchability and rely on healable electrodes or electrolytes rather than achieving full-device self-healability. Herein, an all-component self-bonding strategy is reported to obtain an all-eutectogel soft battery (AESB) that simultaneously achieves full-cell autonomous self-healability and omnidirectional intrinsic stretchability (>1000% areal strain) over a broad temperature range (-20~60 °C).
View Article and Find Full Text PDFMost existing stretchable batteries can generally only be stretched uniaxially and suffer from poor mechanical and electrochemical robustness to withstand extreme mechanical and environmental challenges. A highly efficient bifunctional electrocatalyst is herein developed via the unique self-templated conversion of a guanosine-based supramolecular hydrogel and presents a fully integrated design strategy to successfully fabricate an omnidirectionally stretchable and extremely environment-adaptable Zn-air battery (ZAB) through the synergistic engineering of active materials and device architecture. The electrocatalyst demonstrates a very low reversible overpotential of only 0.
View Article and Find Full Text PDFThe current tough and stretchable gels with various integrated functions are mainly based on polymer hydrogels. By introducing a non-covalent supramolecular self-assembled network into a covalently cross-linked polymer network in the presence of eco-friendly and cost-effective deep eutectic solvents (DESs), we developed a new small molecule-based supramolecular-polymer double-network (SP-DN) eutectogel platform. This exciting material exhibits high stretchability and toughness (>18 000% areal strain), spontaneous self-healing ability, ultrafast (∼5 s) underwater and low-temperature (-80 °C) adhesion, and unusual boiling water-resistance, as well as strong base-, strong acid- (even aqua regia), ultra-low-temperature- (liquid nitrogen, -196 °C), and high-temperature- (200 °C) resistance.
View Article and Find Full Text PDFSupramolecular eutectogels, an emerging class of materials that have just developed very recently, offer a new opportunity for generating functional supramolecular gel materials in biocompatible anhydrous or low-water media. As the first example of supramolecular G4 eutectogels, complexes of natural guanosine and H BO exhibited excellent gelation capacity in choline chloride/alcohol deep eutectic solvents. The as-prepared supramolecular eutectogels displayed unexpected solvent-induced chiral inversion and significantly high ionic conductivity (up to 7.
View Article and Find Full Text PDF