Background: Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive.
Results: We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns.
Plastid genome and nuclear ribosomal DNA (nrDNA) arrays, proposed recently as "super-barcodes," might provide additional discriminatory power and overcome the limitations of traditional barcoding loci, yet super-barcodes need to be tested for their effectiveness in more plant groups. Morphological homoplasy among Schima species makes the genus a model for testing the efficacy of super-barcodes. In this study, we generated multiple data sets comprising standard DNA barcodes (matK, rbcL, trnH-psbA, nrITS) and super-barcodes (plastid genome, nrDNA arrays) across 58 individuals from 12 out of 13 species of Schima from China.
View Article and Find Full Text PDFSpecies of have great economic and ecological values. However, the taxonomy and interspecific phylogenetic relationships within the genus have been controversial and remained not fully resolved until now. To date, no study examined the efficiency of the complete plastome as super-barcode across species with multiple samples per taxon.
View Article and Find Full Text PDFStandard plant DNA barcodes based on 2-3 plastid regions, and nrDNA ITS show variable levels of resolution, and fail to discriminate among species in many plant groups. Genome skimming to recover complete plastid genome sequences and nrDNA arrays has been proposed as a solution to address these resolution limitations. However, few studies have empirically tested what gains are achieved in practice.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2021
F. T. Wang & Tang is an herbal plant species endemic to Yunnan Province of China.
View Article and Find Full Text PDFThe complete plastid genome of , a critically endangered plant species with extremely small populations, was obtained using Illumina HiSeq X Ten and ONT PromethION sequencing. The full length of the plastid genome is 206,467 bp with an overall GC content of 35.8%, which encodes 118 unique genes, including 78 protein-coding genes, 36 tRNA and 4 rRNA genes.
View Article and Find Full Text PDFPolyploidy is an important evolutionary mechanism and is prevalent among land plants. Most polyploid species examined have multiple origins, which provide genetic diversity and may enhance the success of polyploids. In some polyploids, recurrent origins can result from reciprocal crosses between the same diploid progenitors.
View Article and Find Full Text PDFThe Cornales is a relatively small but morphologically diverse order in the basal position of the Asterids clade. Previous study hypothesized that the order might have undergone ancient rapid radiation during the Cretaceous when major angiosperm lineages were established. We conducted the phylogenomic analysis of Cornales using 81 plastid genome sequences with 67 newly generated in this study to test the hypothesis.
View Article and Find Full Text PDFMitochondrial DNA B Resour
April 2018
is an importantly economic tree species in Juglandaceae, which is critically endangered and endemic to Guizhou, China. The plastid genome of was assembled and characterized based on Illumina pair-end sequencing data using genome skimming approach. The complete plastid genome is 175,313 bp in length, with a GC content of 35.
View Article and Find Full Text PDFBackground: The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies.
View Article and Find Full Text PDFBackground And Aims: The extent to which hybridization leads to gene flow between plant species depends on the structure of hybrid populations. However, if this varies between locations, species barriers might prove permeable in some locations but not in others. To assess possible variation in hybrid population structure, the magnitude and direction of natural hybridization between two Chinese endemic species, Rhododendron spiciferum and Rhododendron spinuliferum , were evaluated.
View Article and Find Full Text PDF