Publications by authors named "Chaohui Jiao"

Compared with conventional transparent conductive indium tin oxide (ITO) films, poly(3,4-ethylenedioxythiophene):poly (styrenesulfonic acid) (PEDOT:PSS) as a conductive polymer material has been diffusely applied in organic optoelectronic devices. However, its optoelectrical properties need to be further improved. Therefore, a simple and universal approach with introducing ITO nanoparticles (NPs) was proposed to improve the optoelectrical properties of PEDOT:PSS thin films.

View Article and Find Full Text PDF

A light-controlled artificial synapse, which mimics the human brain has been considered to be one of the ideal candidates for the fundamental physical architecture of a neuromorphic computing system owing to the possible abilities of high bandwidth and low power calculation. However, the low photosensitivity of synapse devices can affect the accuracy of recognition and classification in neuromorphic computing tasks. In this work, a planar light-controlled artificial synapse having high photosensitivity (Ion/Ioff > 1000) with a high photocurrent and a low dark current is realized based on a ZnO thin film grown by radiofrequency sputtering.

View Article and Find Full Text PDF

In this study, a simple and novel mechanical pressure treatment (MPT) was used to effectively improve the electrical and optical properties of ethylene glycol (EG)-doped PEDOT:PSS (EG-PEDOT:PSS) thin films, one of the most successful organic conductor materials ever which is are widely used in organic electronics because of their admirable film-forming property, high light transmittance, and excellent thermal stability. It is found that the conductivity of the EG-PEDOT:PSS films increased by 32% due to dramatically enhanced carrier mobility because an MPT improves the phase separation between PEDOT and PSS and then yields an interpenetrating conductive network. Meanwhile, the transmittance of the EG-PEDOT:PSS films in the near-infrared band was enhanced, and the surface roughness was reduced.

View Article and Find Full Text PDF