Publications by authors named "Chaohong Tan"

Biochar has been proved as a promising and efficient filler in bioretention facilities for enhancing the stormwater pollutants removal. However, the migration behaviors of stormwater pollutants in biochar filled bioretention facilities is unclear. In this study, as one of the most typical stormwater pollutants, naphthalene was selected as an example and a HYDRUS-1D model was first used to understand the migration behavior of naphthalene in a bioretention facility.

View Article and Find Full Text PDF

Understanding the removal of heavy metals (HMs) in permeable pavement systems is of great significance for controlling urban runoff pollution and optimizing structural design. However, few studies have systematically investigated the mechanism of permeable pavement systems in removing HMs from stormwater runoff. In this study, we adopted a hierarchical strategy to understand the efficiency of individual structural layers on HMs removal in a permeable interlocking concrete pavement (PICP) system.

View Article and Find Full Text PDF
Article Synopsis
  • * The beads demonstrated high efficiency, adsorbing 85% of phenanthrene within 30 minutes and showing significant lead adsorption capabilities (up to 11.6 mg/g), with adsorption behavior fitting the Langmuir model better than the Freundlich model.
  • * Additionally, the co-adsorption of phenanthrene and Pb resulted in a synergistic effect, indicating stronger interactions when both pollutants
View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the role of Road-deposited sediments (RDS) in transporting Pharmaceutical and Personal Care Products (PPCPs) like sulfamethoxazole (SMX) and heavy metals like Cu(II) in urban stormwater runoff, highlighting the need for a better understanding of their combined effects.
  • - Kinetic and isotherm analyses show that RDS quickly accumulates high levels of SMX and Cu(II), with significant accumulation occurring within the first 240 and 60 minutes, respectively, and the interactions are influenced by pH changes.
  • - As pH decreases, the initial synergistic effects between SMX and Cu(II) shift to an antagonistic effect, with varying p
View Article and Find Full Text PDF

The occurrence and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in different types of urban road runoff in Beijing during two typical rainfall events were studied. The average concentration of PAHs in road runoff particulate was in the order of Guanyuanqiao Road (ring road, 15,175 ng/L) > Huayuanqiao Road (primary road, 4,792 ng/L) > Dongcheng Alley (alley, 4,774 ng/L) > Nansihuan Viaduct (viaduct, 770 ng/L), much higher than dissolved PAHs. The total concentration of ∑16PAHs decreased with runoff scouring.

View Article and Find Full Text PDF

As the most common filler in stormwater treatment, zeolite (NZ-Y) has good cation exchange capability and stabilization potential for the removal of heavy metal from aqueous solutions. In this study, sodium dodecyl sulfate (SDS) and NZ-Y were selected to preparing new adsorbent (SDS-NZ) by using a simple hydrothermal method. The sorption-desorption performance and mechanism of Cu(II) onto SDS-NZ were investigated.

View Article and Find Full Text PDF

The simultaneous presence of heavy metals and surfactants in runoff induces complexation and ecological harm during migration. However, interactions between these pollutants are often overlooked in past studies. Thus, investigating heavy metal-surfactant complexes in runoff is imperative.

View Article and Find Full Text PDF

In this study, we explored the impact of RDS particle size on the migration dynamics of RDS and naphthalene through rigorous wash-off experiments. The results illuminated that smaller RDS particles showed higher mobility in stormwater runoff. On the other hand, RDS particles larger than 150 μm showed migration ratios below 2 %, suggesting that naphthalene adsorbed on larger RDS primarily migrated in dissolved form.

View Article and Find Full Text PDF

In situ bioremediation through slow-release agents can continuously degrade organic pollutants for a long time and have high application potential in solving problems such as tailing and rebound. However, the existing evaluation system is difficult to reflect the performance of bioremediation through slow-release agents, which is not conducive to the promotion of technology. It is urgent to establish a targeted evaluation system.

View Article and Find Full Text PDF
Article Synopsis
  • The concentration of PAHs varied across different surfaces of athletic fields, with artificial turf having the highest levels, especially during heavy rainfall events, which increased PAH release.
  • Risk assessments indicated moderate-to-high ecological and potential carcinogenic risks to human health from dermal contact with PAHs in the runoff.
View Article and Find Full Text PDF

Particulate matter (PM), as an important carrier of carrying and transporting runoff pollutants, can significantly affect the behavior and removal efficiency of pollutants in bioretention facilities. In order to control the pollution caused by naphthalene in bioretention facilities, the removal efficiency and migration characteristics of naphthalene were systematically investigated under the influences of PM. The results showed that the removal efficiency of naphthalene was 74 ~ 97% in bioretention facilities under the influences of PM.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released.

View Article and Find Full Text PDF

As one of the commonly used stormwater management measures, permeable pavement system (PPS) played a prominent role in controlling runoff pollution and alleviating urban waterlogging. In this study, new enhanced infiltration materials (construction waste brick, coal gangue, activated carbon, multi-walled carbon nanotube, multi-layer graphene) were applied in PPS and the control efficiency and mechanism of typical heavy metals (HMs, Mn, Pb, Zn, Cu, Cd, Ni) was investigated in runoff. Furthermore, the influences of different rainfall intensities and antecedent dry periods on HMs removal by PPS were evaluated.

View Article and Find Full Text PDF

Self-supplied wells, an important water resource in remote and scattered regions, are commonly deteriorated by environmental pollution and human activity. In this study, 156 self-supplied well-water samples were collected from remote and scattered areas of Inner Mongolia (NMG), Heilongjiang (HLJ), and the suburbs of Beijing (BJ) in Northern China. Twenty-four heavy metals were identified by using the inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectrometry (ICP-OES), and the associated human health risks were assessed by using standards of the US Environmental Protection Agency (US EPA).

View Article and Find Full Text PDF

The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters.

View Article and Find Full Text PDF

In recent years, the co-contamination of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) has attracted more and more attention, and finding efficient and coordinated removal method has been the hot focus. In this study, Fe/Mn-SBA15 bimetallic mesoporous silica adsorbent (Fe/Mn-SBA15) was prepared by hydrothermal method with the functional groups Fe and Mn simultaneously doped into the framework structure of SBA15. Fe/Mn-SBA15 was systematically characterized by XRD, TEM, and BET and used in removal of typical PAHs-pyrene and heavy metal-Cu (II) from aqueous solutions simultaneously.

View Article and Find Full Text PDF

The plant carbon source and sulfur were selected as the denitrification electron donors and filled in the internal water storage zone (IWSZ) of bioretention system to establish excellent mixotrophic denitrification system, which was beneficial to waste recycling and showed very high nitrate nitrogen removal efficiency (approximately 94%). The ammonia nitrogen, total nitrogen, and chemical oxygen demand removal efficiencies could reach 79.41%, 85.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) and heavy metals have attracted greater attention due to their single or complex risks. It is urgent to find useful methods to remove these two pollutants together. In this study, SBA15 and MCM-41 were selected and used for the simultaneous removal of pyrene and copper from aqueous solution.

View Article and Find Full Text PDF