Publications by authors named "Chaohe Xu"

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Secondary non-aqueous magnesium-based batteries are a promising candidate for post-lithium-ion battery technologies. However, the uneven Mg plating behavior at the negative electrode leads to high overpotential and short cycle life. Here, to circumvent these issues, we report the preparation of a magnesium/black phosphorus (Mg@BP) composite and its use as a negative electrode for non-aqueous magnesium-based batteries.

View Article and Find Full Text PDF

Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process, reduce the cost, facilitate the recycling post-process, and thus attractive in the field of large-scale stationary energy storage. However, the long-term cycling performance of such batteries is usually poor. This investigation reveals the unavoidable side reactions between the NASICON-type NaV(PO) (NVP) anode and the commercial liquid electrolyte, leading to serious capacity fading in the symmetric NVP//NVP cells.

View Article and Find Full Text PDF

The development of advanced multi-functional electrocatalysts and their industrial operation on paired electrocatalysis systems presents a promising avenue for the gradual penetration of renewable energy into practical production. Herein, a self-supported conductive network of silverene nanobelts (Ag-ene NBs) was delicately assembled (Ag-NB-NWs), in which ultralong and few-atom-layer Ag-ene NBs with a high edge-to-facet ratio were interconnected, serving as "superreactors" for electron transfer and mass transport during the reaction. Such superstructures as electrocatalysts delivered an unparalleled performance toward the CO-to-CO conversion with exclusively high faradaic efficiency (FE) and partial current densities of up to 1 A cm.

View Article and Find Full Text PDF

Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (VO) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg, and therefore catalyze the dissociation of Mg-1,2-Dimethoxyethane (Mg-DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode.

View Article and Find Full Text PDF

Rechargeable magnesium-ion batteries possess desirable characteristics in large-scale energy storage applications. However, severe polarization, sluggish kinetics and structural instability caused by high charge density Mg hinder the development of high-performance cathode materials. Herein, the anionic redox chemistry in VS is successfully activated by inducing cations reduction and introducing anionic vacancies via polyacrylonitrile (PAN) intercalation.

View Article and Find Full Text PDF

Potassium vanadium fluorophosphate (KVPOF) is regarded as a promising cathode candidate for potassium-ion batteries due to its high working voltage and satisfactory theoretical capacity. However, the usage of electrochemically inactive binders and redundant current collectors typically results in inferior electrochemical performance and low energy density, thus implying the important role of rational electrode structure design. Herein, we have reported a scalable and cost-effective synthesis of a cellulose-derived KVPOF self-supporting electrode, which features a special surface hydroxyl chemistry, three-dimensional porous and conductive framework, as well as super flexible and stable architecture.

View Article and Find Full Text PDF

The softness of sulfur sublattice and rotational PS tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa PO and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites.

View Article and Find Full Text PDF

Magnesium-ion batteries (MIBs) have great potential in large-scale energy storage field with high capacity, excellent safety, and low cost. However, the strong solvation effect of Mg will lead to the formation of solvated ions in electrolytes with larger size and sluggish diffusion/reaction kinetics. Here, the concept of interfacial catalytic bond breaking is first introduced into the cathode design of MIBs by hybriding MoS quantum dots with VS (VS@MQDs) as the cathode.

View Article and Find Full Text PDF

Solid state potassium (K) metal batteries are intriguing in grid-scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor K/solid electrolyte (SE) interfacial contact and limited capacity caused by the low K self-diffusion coefficient, dendrite growth, and intrinsically low melting point/soft features of metallic K. Herein, a fused-modeling strategy using potassiophilic carbon allotropes molted with K is demonstrated that can enhance the electrochemical performance/stability of the system via promoting K diffusion kinetics (2.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the potential of intercalation pseudocapacitance in zinc-ion batteries (ZIBs) to enhance charge storage, offering better ion kinetics and cycle stability, though research in this area is still developing.
  • - Researchers developed a novel VO@rGO hybrid aerogel, featuring ultrathin VO nanosheets and a 3D graphene network, which serves as an efficient, binder-free electrode for ZIBs, promoting fast electron/ion diffusion.
  • - The VO@rGO electrode exhibited impressive performance with a reversible rate capacity of 153.9 mAh/g at high current rates, and maintained 90.6% capacity after 1050 cycles, indicating strong practical application potential in batteries
View Article and Find Full Text PDF

Solid-state lithium metal batteries (SSLMBs) promise high energy density and high safety by employing high-capacity Li metal anode and solid-state electrolytes. However, the construction of the composite Li metal electrode is a neglected but important subject when the extensive research focuses on the interface between the solid electrolyte Li La Zr Ta O and Li metal anode. Here, an electronic-ionic conducting composite Li metal anode consisting of Li-Al alloy and LiF is constructed to achieve the stable electronic-ionic transport channel and the intimate interface contact, which can realize the uniform Li deposition and the efficiency utilization of lithium in composite Li metal electrode.

View Article and Find Full Text PDF

Direct application of metallic lithium (Li) as the anode in rechargeable lithium metal batteries (LMBs) is still hindered by some annoying issues such as lithium dendrites formation, low Coulombic efficiency, and safety concerns arising therefrom. Herein, an advanced composite separator is prepared by facilely blade coating lightweight and thin functional layers on commercial 12 µm polyethylene separator to stabilize the Li anode. The composite separator simultaneously improves the Li ion transport and lithium deposition behaviors with uniform lithium ion distribution properties, enabling the dendrite-free Li deposition.

View Article and Find Full Text PDF

Correction for 'Engineering lithiophilic Ni-Al@LDH interlayers on a garnet-type electrolyte for solid-state lithium metal batteries' by Wei Liu , , 2021, , 10214-10217, DOI: 10.1039/D1CC02932K.

View Article and Find Full Text PDF

In this work, a lithiophilic Ni-Al@LDH interlayer is engineered at the LiLaZrTaO (LLZTO) electrolyte and Li anode interface. The Ni-Al@LDH interlayer can significantly reduce the interfacial resistance as well as give excellent cycling performance both in a symmetric Li//Li cell and solid full lithium metal batteries.

View Article and Find Full Text PDF

Solid-state lithium-metal batteries (SSLMBs) using garnet LiLaZrTaO (LLZTO) as the solid electrolyte are expected to conquer the safety concerns of high energy Li batteries with organic liquid electrolytes owing to its nonflammable nature and good mechanical strength. However, the poor interfacial contact between the Li anode and LLZTO greatly restrains the practical applications of the electrolyte, because large polarization, dendritic Li formation and penetration can occur at the interfaces. Here, an effective method is proposed to improve the wettability of the LLZTO toward lithium and reduce the interfacial resistance by engineering universal lithiophilic interfacial layers.

View Article and Find Full Text PDF

Zinc-air batteries (ZnABs) with high theoretical capacity and environmental benignity are the most promising candidates for next-generation electronics. However, their large-scale applications are greatly hindered due to the lack of high-efficient and cost-effective electrocatalysts. Transition metal phosphides (TMPs) have been reported as promising electrocatalysts.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene films (GFs) are lightweight and flexible materials with great thermal conductivity, but their mechanical strength and thermal conductivity in certain directions limit their use in electronics.
  • A new composite film, G-gPDA-CNT, was created by combining graphene, graphitized polydopamine (gPDA), and carbon nanotubes (CNTs) to enhance both mechanical and thermal properties.
  • The G-gPDA-CNT film demonstrated significantly improved characteristics, boasting a tensile strength of 67.5 MPa and a much higher through-plane thermal conductivity, making it a superior option compared to standard GFs.
View Article and Find Full Text PDF

Hybrid polymer electrolytes with excellent performance at high temperatures are very promising for developing solid-state lithium batteries for high-temperature applications. Herein, we use a self-supporting hydroxyapatite (HAP) nanowire membrane as a filler to improve the performance of a poly(ethylene oxide) (PEO)-based solid-state electrolyte. The HAP membrane could comprehensively improve the properties of the hybrid polymer electrolyte, including the higher room-temperature ionic conductivity of 1.

View Article and Find Full Text PDF

Nonaqueous rechargeable lithium-oxygen batteries (LOBs) are one of the most promising candidates for future electric vehicles and wearable/flexible electronics. However, their development is severely hindered by the sluggish kinetics of the ORR and OER during the discharge and charge processes. Here, we employ MOF-assisted spatial confinement and ionic substitution strategies to synthesize Ru single atoms riveted with nitrogen-doped porous carbon (Ru SAs-NC) as the electrocatalytic material.

View Article and Find Full Text PDF

Miniaturization and integration of electronic components lead to increasing challenges of thermal management. Ultrathin materials with excellent thermal and flexibility are urgently required for portable electronic devices. In this study, the 1-pyrenemethanol (PyM) modified graphene oxide (GO) (GO-PyM) films were prepared in ethanol solution by an evaporation-induced assembly method.

View Article and Find Full Text PDF

The development of highly sensitive wearable and foldable pressure sensors is one of the central topics in artificial intelligence, human motion monitoring, and health care monitors. However, current pressure sensors with high sensitivity and good durability in low, medium, and high applied strains are rather limited. Herein, a flexible pressure sensor based on hierarchical three-dimensional and porous reduced graphene oxide (rGO) fiber fabrics as the key sensing element is presented.

View Article and Find Full Text PDF

Generally, the practical capacity of an electrode should include the weight of non-active components such as current collector, polymer binder, and conductive additives, which were as high as 70 wt% in current reported works, seriously limiting the practical capacity. This work pioneered the usage of ultralight reduced graphene fiber (rGF) fabrics as conductive scaffolds, aiming to reduce the weight of non-active components and enhance the practical capacity. Ultrathin SnS nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries (SIBs).

View Article and Find Full Text PDF

The rational design of excellent electrocatalysts is significant for triggering the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable metal-air batteries. Hereby, we report a bifunctional catalytic material with core-shell structure constructed by CoO nanowire arrays as cores and ultrathin NiFe-layered double hydroxides (NiFe LDHs) as shells (CoO@NiFe LDHs). The introduction of CoO nanowires could provide abundant active sites for NiFe LDH nanosheets.

View Article and Find Full Text PDF

The thickness of a solid electrolyte influences the performance of all-solid-state batteries due to increased impedance with a thick electrolyte. Thin solid electrolytes are favourable to improve the performance of all-solid-state batteries due to the short Li ion diffusion path and small volume of the solid electrolytes. Therefore, the preparation of thin solid electrolyte is one of the key process techniques for development of all-solid-state batteries.

View Article and Find Full Text PDF