Nonlinear frequency mixing is a method to extend the wavelength range of optical sources with applications in quantum information and photonic signal processing. Lithium niobate with periodic poling is the most widely used material for frequency mixing due to its strong second-order nonlinear coefficient. The recent development using nanophotonic lithium niobate waveguides promises to improve nonlinear efficiencies by orders of magnitude thanks to subwavelength optical confinement.
View Article and Find Full Text PDFQuantum receivers aim to effectively navigate the vast quantum-state space to endow quantum information processing capabilities unmatched by classical receivers. To date, only a handful of quantum receivers have been constructed to tackle the problem of discriminating coherent states. Quantum receivers designed by analytical approaches, however, are incapable of effectively adapting to diverse environmental conditions, resulting in their quickly diminishing performance as the operational complexities increase.
View Article and Find Full Text PDFSecond-order optical nonlinearity is widely used for both classical and quantum photonic applications. Due to material dispersion and phase matching requirements, the polarization of optical fields is pre-defined during the fabrication. Only one type of phase matching condition is normally satisfied, and this limits the device flexibility.
View Article and Find Full Text PDFMaking analogy with atomic physics is a powerful tool for photonic technology, witnessed by the recent development in topological photonics and non-Hermitian photonics based on parity-time symmetry. The Mollow triplet is a prominent atomic effect with both fundamental and technological importance. Here we demonstrate the analog of the Mollow triplet with quantum photonic systems.
View Article and Find Full Text PDFIn this Letter, we propose a new approach to process high-dimensional quantum information encoded in a photon frequency domain. In contrast to previous approaches based on nonlinear optical processes, no active control of photon energy is required. Arbitrary unitary transformation and projection measurement can be realized with passive photonic circuits and time-resolving detection.
View Article and Find Full Text PDF