Publications by authors named "Chaofa Xu"

The catalytic performance of a catalyst is significantly influenced by its ability to activate hydrogen. Constructing frustrated Lewis pairs (FLPs) with the capacity for hydrogen dissociation on non-reducible supports remains a formidable challenge. Herein, we employed a straightforward method to synthesize a layered AlOOH featuring abundant OH defects suitable for constructing solid surface frustrated Lewis pair (ssFLP).

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that the metal-support interface is crucial for catalysis, traditionally thought to only involve the atomic region at the metal/support edges.
  • Using CuO on a Pd catalyst, a new 2D microporous interface enhances hydrogenation reactions, showing better activity and selectivity with alkynes.
  • The improved performance is linked to Cu(0) and Pd alloying, which alters hydrogen adsorption, while alkynes help stabilize the CuO overlayer and extend the effectiveness of the catalyst.
View Article and Find Full Text PDF

Size effect plays a crucial role in catalytic hydrogenation. The highly dispersed ultrasmall clusters with a limited number of metal atoms are one candidate of the next generation catalysts that bridge the single-atom metal catalysts and metal nanoparticles. However, for the unfavorable electronic property and their interaction with the substrates, they usually exhibit sluggish activity.

View Article and Find Full Text PDF

Metal-support interaction is one of the most important parameters in controlling the catalysis of supported metal catalysts. Silica, a widely used oxide support, has been rarely reported as an effective support to create active metal-support interfaces for promoting catalysis. In this work, by coating Cu microparticles with mesoporous SiO, we discover that Cu/SiO interface creates an exceptional effect to promote catalytic hydrogenation of esters.

View Article and Find Full Text PDF

A general strategy, using mixed ligands, is utilized to synthesize atomically precise, intrinsically chiral nanocluster [Ag(DPPP)(SR)] (Ag) where DPPP is the achiral 1,3-bis(diphenyphosphino)propane and SR = SPhCF. Ag crystallizes as racemates in a centric space group. Using chiral diphosphines BDPP = 2,4-bis(diphenylphosphino)pentane, the enantiomeric pair [Ag(R/S-BDPP)(SR)] can be prepared with 100% optical purity.

View Article and Find Full Text PDF

The electrochemical conversion of CO and HO into syngas using renewably generated electricity is an attractive approach to simultaneously achieve chemical fixation of CO and storage of renewable energy. Developing cost-effective catalysts for selective electroreduction of CO into CO is essential to the practical applications of the approach. We report a simple synthetic strategy for the preparation of ultrathin Cu/Ni(OH) nanosheets as an excellent cost-effective catalyst for the electrochemical conversion of CO and HO into tunable syngas under low overpotentials.

View Article and Find Full Text PDF

Demonstrated herein are the preparation and crystallographic characterization of the family of fcc silver nanoclusters from Nichol's cube to Rubik's cube and beyond via ligand-control (thiolates and phosphines in this case). The basic building block is our previously reported fcc cluster [Ag(SPhF)(PPh)] (1). The metal frameworks of [Ag(SPhF)(PR')] (2) and [Ag(SPhF)(PR')] (2), where HSPhF = 3,4-difluorothiophenol and R' = alkyl/aryl, are composed of 2 × 2 = 4 and 2 × 2 × 2 = 8 metal cubes of 1, respectively.

View Article and Find Full Text PDF

Determining the structures of nanoparticles at atomic resolution is vital to understand their structure-property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter).

View Article and Find Full Text PDF

Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia.

View Article and Find Full Text PDF

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics.

View Article and Find Full Text PDF

: CO is introduced as a confining agent to regulate the anisotropic growth of unique 2D structure. The single-crystalline Rh nanosheets have a thickness of three to five atomic layers and tunable edge length ranging from 500 to 1300 nm. By understanding the formation mechanism, surface-clean Rh nanosheets are also prepared and display better catalytic performance that their surfactant-capped nanosheets.

View Article and Find Full Text PDF

An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.

View Article and Find Full Text PDF

This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures.

View Article and Find Full Text PDF

Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment.

View Article and Find Full Text PDF