Publications by authors named "Chaode Sun"

Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability.

View Article and Find Full Text PDF

Effective therapeutic agents are lacking for the prevention and reversal of vascular leak, a frequent pathophysiologic result of inflammatory processes such as acute respiratory distress syndrome (ARDS) and sepsis. We previously demonstrated the potent barrier-enhancing effects of related compounds sphingosine 1-phosphate (S1P), the pharmaceutical agent FTY720, and its analog (S)-FTY720 phosphonate (Tys) in models of inflammatory lung injury. In this study, we characterize additional novel FTY720 analogs for their potential to reduce vascular leak as well as utilize them as tools to better understand the mechanisms by which this class of agents modulates permeability.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates why tyrosine kinase inhibitors (TKIs) are ineffective on quiescent hematopoietic stem cells (HSCs) in chronic myeloid leukemia (CML), revealing that these resistant cells rely on the suppression of the tumor suppressor protein PP2A rather than the BCR-ABL1 kinase activity.
  • - CML quiescent HSCs exhibited increased BCR-ABL1 expression without its kinase activity, leading to the activation of a survival pathway involving JAK2 and β-catenin, which further inhibited PP2A.
  • - Treatment with PP2A-activating drugs (PADs) significantly impaired the survival and self-renewal of these CML
View Article and Find Full Text PDF

Sphingosine kinase 2 (SK2) catalyses the conversion of sphingosine to the bioactive lipid sphingosine 1-phosphate (S1P). We report here, the stereospecific synthesis of an analogue of FTY720 called (R)-FTY720-OMe, which we show is a competitive inhibitor of SK2. (R)-FTY720-OMe failed to inhibit sphingosine kinase 1 activity, thereby demonstrating specificity for SK2.

View Article and Find Full Text PDF

FTY720 (Fingolimod), a synthetic analogue of sphingosine 1-phosphate (S1P), activates four of the five EDG-family S1P receptors and is in a phase-III clinical study for the treatment of multiple sclerosis. (S)-FTY720-phosphate (FTY720-P) causes S1P(1) receptor internalization and targeting to the proteasomal degradative pathway, and thus functions as an antagonist of S1P(1) by depleting the functional S1P(1) receptor from the plasma membrane. Here we describe the pharmacological characterization of two unsaturated phosphonate enantiomers of FTY720, (R)- and (S)-FTY720-vinylphosphonate.

View Article and Find Full Text PDF

The first enantioselective synthesis of chiral isosteric phosphonate analogues of FTY720 is described. One of these analogues, FTY720-(E)-vinylphosphonate (S)-5, but not its R enantiomer, elicited a potent antiapoptotic effect in intestinal epithelial cells, suggesting that it exerts its action via the enantioselective activation of a receptor. (S)-5 failed to activate the sphingosine 1-phosphate type 1 (S1P(1)) receptor.

View Article and Find Full Text PDF

Sphingosine 1-phosphate (S1P) regulates diverse cellular functions through extracellular ligation to S1P receptors, and it also functions as an intracellular second messenger. Human pulmonary artery endothelial cells (HPAECs) effectively utilized exogenous S1P to generate intracellular S1P. We, therefore, examined the role of lipid phosphate phosphatase (LPP)-1 and sphingosine kinase1 (SphK1) in converting exogenous S1P to intracellular S1P.

View Article and Find Full Text PDF

An azido group was incorporated into the immunomodulatory agent FTY720, accomplishing the first synthesis of a photoactivatable analogue of this ligand (2) in 9 steps from 2-(4-hydroxyphenyl)ethanol and in 34% overall yield. The key steps are formation of a primary amine at a quaternary center of aniline derivative 13 followed by selective diazotization of the arylamine.

View Article and Find Full Text PDF

D-erythro-(2S,3R,4E)-Sphingosine-1-phosphonate (1), the isosteric phosphonate analogue of naturally occurring sphingosine 1-phosphate (1a), and D-ribo-phytosphingosine 1-phosphonate (2), the isosteric phosphonate analogue of D-ribo-phytosphingosine-1-phosphate (2a), were synthesized starting with methyl 2,3-O-isopropylidene-d-glycerate (4) and D-ribo-phytosphingosine (3), respectively. Oxirane 12 was formed in eight steps from 4, and cyclic sulfamidate 22 was formed in five steps from 3. The phosphonate group was introduced via regioselective ring-opening reactions of oxirane 12 and cyclic sulfamidate 22 with lithium dialkyl methylphosphonate, affording 13 and 23, respectively.

View Article and Find Full Text PDF