Publications by authors named "Chaocai Zhang"

Due to the negligence of the complex tumor immune microenvironment, traditional treatment for glioblastoma has reached its limitation and cannot achieve a satisfying outcome in the past decade. The emergence of immunotherapy based on the theory of cancer-immunity cycle has brought a new dawn to glioblastoma patients. However, the results of most phase II and phase III clinical trials are not optimistic due to the simple focus on T cells activation rather than other immune cells involved in anti-tumor immunity.

View Article and Find Full Text PDF

Background: Glioma is the most common malignant brain tumor in adults, with its tumor-promoting immune microenvironment always being intricate to handle with. Amounts of evidence has accumulated to suggest that alternative splicing (AS) is related to tumor immune microenvironment. However, comprehensive analysis of immune-related AS events and their clinical significance are still lacking in glioma.

View Article and Find Full Text PDF

Glioblastoma is one of the most common malignant tumors in the central nervous system. Due to the high plasticity, heterogeneity and complexity of the tumor microenvironment, these tumors are resistant to almost all therapeutic strategies when they reach an advanced stage. Along with being a unique and effective way to kill cancer cells, tumor-treating fields (TTFields) has emerged as a breakthrough among glioblastoma therapies since the advent of temozolomide (TMZ), and the combination of these treatments has gradually been promoted and applied in the clinic.

View Article and Find Full Text PDF

This study aims to build a radiological model based on standard MR sequences for detecting methylguanine methyltransferase (MGMT) methylation in gliomas using texture analysis. A retrospective cross-sectional study was undertaken in a cohort of 53 glioma patients who underwent standard preoperative magnetic resonance (MR) imaging. Conventional visual radiographic features and clinical factors were compared between MGMT promoter methylated and unmethylated groups.

View Article and Find Full Text PDF

Introduction: Glioblastoma (GBM) is one of the most frequent primary intracranial malignancies, with limited treatment options and poor overall survival rates. Alternated glucose metabolism is a key metabolic feature of tumour cells, including GBM cells. However, due to high cellular heterogeneity, accurately predicting the prognosis of GBM patients using a single biomarker is difficult.

View Article and Find Full Text PDF

Objective: To investigate the value of radiomics analyses based on different magnetic resonance (MR) sequences in the noninvasive evaluation of glioma characteristics for the differentiation of low-grade glioma versus high-grade glioma, isocitrate dehydrogenase (IDH)1 mutation versus IDH1 wild-type, and mutation status and 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (+) versus MGMT promoter methylation (-) glioma.

Methods: Fifty-nine patients with untreated glioma who underwent a standard 3T-MR tumor protocol were included in the study. A total of 396 radiomics features were extracted from the MR images, with the manually delineated tumor as the volume of interest.

View Article and Find Full Text PDF

Objective: To study the expression of FAM46A in glioblastoma (GBM) and analyze its significance in predicting the prognosis of patients.

Materials And Methods: mRNA expression and clinical data of patients with GBM were retrieved from ONCOMINE databases and The Cancer Genome Atlas (TCGA) database. Immunohistochemistry was performed in a tissue microarray including 110 GBM cases and 12 normal controls to determine the expression of FAM46A protein.

View Article and Find Full Text PDF

Purpose: To explore the regulatory mechanism of long non-coding RNA small nucleolar RNA host gene 1 (SNHG1) in glioma.

Materials And Methods: The expression of SNHG1 and miR-140-5p in glioma tissues and glioma cell lines (LN-18, KNS-81, and KALS-1) was determined, and the effect of the two on cell proliferation, invasion, and PI3K/AKT pathway was analyzed.

Results: SNHG1 was overexpressed in glioma tissues, while miR-140-5p was underexpressed in them, and there was a significant negative correlation between SNHG1 and miR-140-5p.

View Article and Find Full Text PDF

The high mortality and poor clinical prognosis of glioblastoma multiforme (GBM) are concerns for many GBM patients as well as clinicians and researchers. The lack of a preclinical model that can easily be established and accurately recapitulate tumour biology and the tumour microenvironment further complicates GBM research and its clinical translation. GBM organoids (GBOs) are promising high-fidelity models that can be applied to model the disease, develop drugs, establish a living biobank, mimic therapeutic responses and explore personalized therapy.

View Article and Find Full Text PDF

Introduction: Pituitary adenomas constitute one of the most common intracranial tumours. The mouse double minute 2 homologue (MDM2) is considered as an important oncogene in many tumours, but it has been little studied in pituitary adenomas and the mechanism is not well understood. The purpose of this study was to investigate the function of MDM2 and its primary mechanism of action in pituitary adenoma cells.

View Article and Find Full Text PDF

Pituitary adenomas constitute one of the most common intracranial tumors. MicroRNAs play an important role in development and progression of pituitary adenomas. In this study, we showed that miR-219a-2-3p was significantly down-regulated in pituitary adenomas cells.

View Article and Find Full Text PDF

Cancer stem cells contribute to cancer progression, but the mechanisms underlying neuroblastoma stem cell development are unclear. Here, we examined the roles of the transcription factor SLC34A2 in regulating the stemness of neuroblastoma cells. We found that SLC34A2 expression was negatively correlated with the overall survival and relapse-free survival probability of neuroblastoma patients.

View Article and Find Full Text PDF

Introduction: Runt-related transcription factor 3 (RUNX3) exerts a tumor suppressor gene associated with gastric and other cancers, including glioma. However, how its anti-tumor mechanism in functions glioma is unclear.

Methods: We assayed expression of RUNX3 with a tissue microarray (TMA), frozen cancer tissues and malignant glioma cell lines using immunohistochemistry, qRT-PCR and Western bolt analysis.

View Article and Find Full Text PDF

Background: As the population ages, the proportion of elderly patients with glioblastomas has increased. Recently, many researchers have focused on the treatments available to and prognoses in elderly patients with glioblastomas.

Methods: We conducted a retrospective study of glioblastoma patients aged 60 years old or older who were treated at the Neurosurgery Center at Beijing Tiantan Hospital from 2012 to 2014.

View Article and Find Full Text PDF

Objective: To present our experience with microsurgical technique for patients with giant meningiomas (maximum diameter ≥7 cm) that obstruct the superior sagittal sinus (SSS).

Methods: All patients who were preoperatively diagnosed (between 2010 and 2014) with giant meningiomas involving the SSS in Ward 10 at the Neurosurgery Department of Beijing Tiantan Hospital were enrolled in this study. Patient charts, imaging findings, and outcomes were examined.

View Article and Find Full Text PDF