Publications by authors named "Chao-yue Zhang"

Objective: The present study evaluated the effects of deep acupuncture at Weizhong acupoint (BL40) on bladder function and brain activity in a rat model of overactive bladder (OAB), and investigated the possible mechanisms around the acupuncture area that initiate the effects of acupuncture.

Methods: Adult female Sprague-Dawley rats were randomly divided into six groups, comprising a control group, model group, group treated with deep acupuncture at BL40, group treated with shallow acupuncture at BL40, group treated with acupuncture at non-acupoint next to BL40, and group treated with acupuncture at Xuanzhong (GB39). Urodynamic evaluation was used to observe the urination, and functional magnetic resonance imaging was used to observe the brain activation.

View Article and Find Full Text PDF

Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium-sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li-S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO (PBTO) particles and coating with a layer of MoS (PBTO@PNF-MoS) is developed on the PP separator.

View Article and Find Full Text PDF

Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery.

View Article and Find Full Text PDF

The commercialization of lithium-sulfur batteries (LSBs) faces significant challenges due to persistent issues, such as the shuttle effect of lithium polysulfides (LiPSs) and the slow kinetics of cathodic reactions. To address these limitations, this study proposes a vacancy-engineered cobalt ditelluride catalyst (v-CoTe) supported on nitrogen-doped carbon as a sulfur host at the cathode. Density functional theory calculations and experimental results indicate that the electron configuration modulation of v-CoTe enhances the chemical affinity and catalytic activity toward LiPS.

View Article and Find Full Text PDF

Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive.

View Article and Find Full Text PDF

The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS/NiSe heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS/NiSe@NC) are synthesized and used as a catalytic additive in sulfur cathodes.

View Article and Find Full Text PDF

Electrocatalytic hydrogenation (ECH) approaches under ambient temperature and pressure offer significant potential advantages over thermal hydrogenation processes but require highly active and efficient hydrogenation electrocatalysts. The performance of such hydrogenation electrocatalysts strongly depends not only on the active phase but also on the architecture and surface chemistry of the support material. Herein, Pd nanoparticles supported on a nickel metal-organic framework (MOF), Ni-MOF-74, are prepared, and their activity toward the ECH of benzaldehyde (BZH) in a 3 M acetate (pH 5.

View Article and Find Full Text PDF

An ABX spinel structure, with tetrahedral A and octahedral B sites, is a paradigmatic class of catalysts with several possible geometric configurations and numerous applications, including polysulfide conversion in metal-sulfur batteries. Nonetheless, the influence of the geometric configuration and composition on the mechanisms of catalysis and the precise manner in which spinel catalysts facilitate the conversion of polysulfides remain unknown. To enable controlled exposure of single active configurations, herein, Co and Co in CoO catalysts for sodium polysulfide conversion are in large part replaced by Fe and Fe, respectively, generating FeCoO and CoFeO.

View Article and Find Full Text PDF

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi Te ), coated with polypyrrole (PPy) is proposed.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) are still limited by the shuttle of lithium polysulfides (LiPS) and the slow Li-S reaction. Herein, we demonstrate that when using cobalt sulfide as a catalytic additive, an external magnetic field generated by a permanent magnet can significantly improve the LiPS adsorption ability and the Li-S reaction kinetics. More specifically, the results show both experimentally and theoretically how an electron spin polarization of Co ions reduces electron repulsion and enhances the degree of orbital hybridization, thus resulting in LSBs with unprecedented performance and stability.

View Article and Find Full Text PDF

Active metal ions often show a strong cutting effect on the chemical bonds during high-temperature thermal processes. Herein, a one-pot metal ion cutting-assisted method was adopted to design defect-rich MoS nanosheet (NS)/ZnS nanoparticle (NP) heterojunction composites on carbon nanofiber skeletons (CNF@MoS/ZnS) via a simple Ar-ambience annealing. Results show that Zn ions capture S ions from MoS and form into ZnS NPs, and the MoS NSs lose S ions and become MoS ones.

View Article and Find Full Text PDF

High-risk populations of schizophrenia can be mainly identified as genetic high-risk based on putative endophenotypes or ultra-high-risk (UHR) based on clinically manifested symptoms. Previous studies have consistently shown brain structural abnormalities in both genetic high-risk and UHR individuals. In this study, we aimed to disentangle the convergent and divergent pattern of gray matter alterations between UHR and unaffected first-degree relatives from genetic high-risk individuals.

View Article and Find Full Text PDF

Bacteria play a key role in the removal of pollutants and nutrients in constructed wetlands. DNA and RNA high-throughput sequencing was used to investigate the diversity, metabolic activity, and function of bacteria in aquaculture wastewater and in constructed wetlands treated by different aeration levels. The results revealed that:① a total of 4042 operational taxonomic units (OTUs) were detected in aquaculture wastewater and constructed wetland treatment groups.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are often used to settle down the sluggish reaction kinetics in lithium-sulfur batteries (LSBs). However, the self-aggregation of CNTs often makes them fail to effectively inhibit the shuttling effect of soluble lithium polysulfide (LiPS) intermediates. Herein, a type of ultra-stable carbon micro/nano-scale interconnected "carbon cages" has been designed by incorporating polar acid-treated carbon fibers (ACF) into three-dimensional (3D) CNT frameworks during vacuum filtration processes.

View Article and Find Full Text PDF

Objective: To study the relationship between hypoxia and the hypoxia inducible factor-1α (HIF-1α) from lung cancer cells, to reveal the possible mechanism of brain metastases of lung cancer.

Methods: The hypoxia model of A549 lung cancer cells was established. After hypoxia culture of A549 cells for 0.

View Article and Find Full Text PDF

Gastric cancer is the fourth most common cancer worldwide and the third most common in Asia, with a high mortality. Photodynamic therapy (PDT) is a new treatment for cancer. With advantages of minimum invasiveness, small adverse side effects and high selectivity, PDT can be used as palliative treatment for patients with advanced gastric cancer.

View Article and Find Full Text PDF

Objective: To explore clinical presentations and the operational opportunity of traumatic cervical disc herniation.

Methods: From June 2002 to June 2009,40 patients with traumatic cervical disc herniation were treated. There were 24 males and 16 females, with an average age of 43.

View Article and Find Full Text PDF

The optimal treatment approach for the initial management of radial nerve palsy associated with humeral shaft fractures has yet to be conclusively determined. The authors performed a systematic review of the literature to identify studies that compared the outcomes after initial nonoperative and operative management for radial nerve palsy associated with acute humeral shaft fractures. A meta-analysis of the data from these studies was also performed to determine whether recovery from radial nerve palsy was more favorable in one approach compared with the other.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of endoscopic paravertebral approach surgery in the far lateral lumbar disc herniation.

Methods: Fifty sets of integral lumbar vertebral specimens were selected, and the anatomical data of lumbar intervertebral foramina and its adjacent structures were measured. Twenty specimens are randomly divided into a traditional group and an endoscopic group, then the traditional and endoscopic operations by paravertebral approach were used to dissect every strata of soft tissues in order to expose the intervertebral foramen.

View Article and Find Full Text PDF

Objective: To explore the application of three dimensional(3D) CT reconstruction(3D-CT-R) in spinal stenosis and injury of the bone and joint.

Methods: Forty cases were examined with the X-ray film, CT scan and 3D-CT-R. To evaluate their diagnostic value, the images of the three methods were compared.

View Article and Find Full Text PDF