Tibetan minipig is an important animal model for human diseases. The anterior pituitary is the master gland responsible for growth, reproduction, and metabolism and is regulated by thousands of miRNAs/mRNAs molecules. However, little is known about miRNAs and their relationships with mRNAs in Tibetan minipig anterior pituitary.
View Article and Find Full Text PDFFSH plays an essential role in processes involved in human reproduction, including spermatogenesis and the ovarian cycle. While the transcriptional regulatory mechanisms underlying its synthesis and secretion have been extensively studied, little is known about its posttranscriptional regulation. A bioinformatics analysis from our group indicated that a microRNA (miRNA; miR-361-3p) could regulate FSH secretion by potentially targeting the FSHB subunit.
View Article and Find Full Text PDFThe anterior pituitary is the most important endocrine organ modulating animal postnatal growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is characterized as having a lower growth performance and fewer individual differences compared with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig were used for miRNA and mRNA expression profile analysis using miRNA microarrays and mRNA-seq.
View Article and Find Full Text PDFObjective: Growth hormone releasing hormone (GHRH) is a major positive regulator of growth hormone (GH) in the anterior pituitary gland, while cortistatin's (CST) role is negative. miRNAs (microRNAs or miRs) are small RNA molecules modulating gene expression at the post-transcriptional level. However, little is known about the function of miRNAs in the regulation of GH synthesis and/or secretion.
View Article and Find Full Text PDF