Publications by authors named "Chao-Yi Chiang"

A new artificial receptor 1 was synthesized for the detection of Fe(3+) and Mg(2+) in solution as a colorimetric and fluorescent sensor, respectively. The sensor exhibited highly selective and sensitive recognition towards Fe(3+) in CH(3)CN via color change from colorless to brown. Also it showed a significant fluorescence enhancement (70-fold) towards Mg(2+) in the mixture of solution CH(3)CN/H(2)O (8:2, v/v).

View Article and Find Full Text PDF

Compared to [Ni(II)(SePh)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (1a) and [Ni(II)(Cl)(P(o-C(6)H(3)-3-SiMe(3)-2-S)(2)(o-C(6)H(3)-3-SiMe(3)-2-SH))]- (3a) with a combination of the intramolecular [Ni...

View Article and Find Full Text PDF

The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.

View Article and Find Full Text PDF

Owing to the indiscriminate reactivity of the free NO radical, intricate control mechanisms are required for storage, transport and transfer of NO to its various biological targets. Among the proposed storage components are protein-bound thionitrosyls (Rprotein-SNO) and protein-bound dinitrosyl iron complexes. Current knowledge suggests the latter are derived from iron-sulfur cluster degradation in the presence of excess NO.

View Article and Find Full Text PDF

A series of tetragonally distorted square pyramids of formula N2S2M(NO) (M = Fe, Co) is prepared and characterized by nu(NO) IR and EPR spectroscopies, magnetism and electrochemical properties, as well as solid-state crystal structure determinations. While the nu(NO) IR frequencies and the angleM-N-O angles indicate differences in the electronic environment of NO consistent with the Enemark-Feltham notation of [Fe(NO)]7 and [Co(NO)]8, the reduction potentials, assigned to [Fe(NO)]7 + e- <==> [Fe(NO)]8 and [Co(NO)]8 + e- <==> [Co(NO)]9 respectively, are very similar, and in cases identical, for most members of the series. Coupled with the potential for the M(NO) units to breathe out of and into the N2S2 core plane are unique S-M-N-O torsional arrangements and concomitant pi-bonding interactions which may account for the unusual coherence of reduction potentials within the series.

View Article and Find Full Text PDF

The N-protonated bismercaptoethanediazacyclooctane serves as a bidentate dithiolate ligand to oxidized Fe(NO)(2) of Enemark-Feltam notation, E-F [Fe(NO)(2)],(9) mimicking Cys-X-Cys binding of Fe(NO)(2) to proteins or thio-biomolecules. The neutral compound is characterized by the well-known g = 2.03 EPR signal which is a hallmark of dinitrosyl iron complexes, DNIC's.

View Article and Find Full Text PDF

The established ability of the Fe(II) bridging hydride species (micro-H)(micro-pdt)[Fe(CO)2(PMe3)]2+, 1-H+, to take-up and heterolytically activate dihydrogen, resulting in H/D scrambling of H2/D2 and H2/D2O mixtures (Zhao et al. Inorg. Chem.

View Article and Find Full Text PDF

Protonation of the [Fe]-hydrogenase model complex (mu-pdt)[Fe(CO)(2)(PMe(3))](2) (pdt = SCH(2)CH(2)CH(2)S) produces a species with a high field (1)H NMR resonance, isolated as the stable [(mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)](+)[PF(6)](-) salt. Structural characterization found little difference in the 2Fe2S butterfly cores, with Fe.Fe distances of 2.

View Article and Find Full Text PDF