Nanocrystals with a size in the regime of vanishing quantum confinement, or bulk nanocrystals (BNCs), have emerged recently as viable solution processable optical gain materials in the green part of the spectrum. Here, we show that these properties can be extended to the crucial red region using CdSe BNCs. Through quantitative time-resolved spectroscopy, we can model these nanocrystals as bulk semiconductors, thereby revealing that the gain originates from an unbound electron-hole plasma state.
View Article and Find Full Text PDFCombining integrated optical platforms with solution-processable materials offers a clear path toward miniaturized and robust light sources, including lasers. A limiting aspect for red-emitting materials remains the drop in efficiency at high excitation density due to non-radiative quenching pathways, such as Auger recombination. Next to this, lasers based on such materials remain ill characterized, leaving questions about their ultimate performance.
View Article and Find Full Text PDFThe intractable brittleness and opacity of the crystalline semiconductor restrict the prospect of developing low-cost imaging systems. Here, infrared visualization technologies are established with large-area, semi-transparent organic upconversion devices that bring high-resolution invisible images into sight without photolithography. To exploit all photoinduced charge carriers, a monolithic device structure is proposed built on the infrared-selective, single-component charge generation layer of chloroaluminum phthalocyanine (ClAlPc) coupled to two visible light-emitting layers manipulated with unipolar charges.
View Article and Find Full Text PDFThe exploration of deactivation mechanisms for near-infrared(NIR)-emissive organic molecules has been a key issue in chemistry, materials science and molecular biology. In this study, based on transient absorption spectroscopy and transient grating photoluminescence spectroscopy, we demonstrate that the aggregated Pt complex 4H (efficient NIR emitter) exhibits collective out-of-plane motions with a frequency of 32 cm (0.96 THz) in the excited states.
View Article and Find Full Text PDFEfficient exciton diffusion and charge transport play a vital role in advancing the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, a facile strategy is presented to simultaneously enhance exciton/charge transport of the widely studied PM6:Y6-based OSCs by employing highly emissive trans-bis(dimesitylboron)stilbene (BBS) as a solid additive. BBS transforms the emissive sites from a more H-type aggregate into a more J-type aggregate, which benefits the resonance energy transfer for PM6 exciton diffusion and energy transfer from PM6 to Y6.
View Article and Find Full Text PDFUltrafast transient absorption spectroscopy is a powerful tool to reveal excited state dynamics in various materials. Conventionally, probe pulses are generated via bulk supercontinuum generation or (noncollinear) optical parametric amplifiers whilst pump pulses are generated separately using (noncollinear) optical parametric amplifiers. These systems are limited by either their spectral density, stability, spectral range, and/or temporal compressibility.
View Article and Find Full Text PDFA transgenic maize event ZD12-6 expressing a Bacillus thuringiensis (Bt) fusion protein Cry1Ab/Cry2Aj and a modified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein G10 was characterized and evaluated. Southern blot analysis indicated that ZD12-6 is a single copy integration event. The insert site was determined to be at chromosome 1 by border sequence analysis.
View Article and Find Full Text PDFA carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted α-hydroxy-β-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of α-aryl α-hydroxy-β-amino amides has been synthesized in high yields with excellent diastereoselectivities.
View Article and Find Full Text PDFAn efficient protocol is described for the synthesis of vicinal diamines via aza-Brook rearrangement-initiated nucleophilic addition of α-silylamines to imines. Various symmetrical and unsymmetrical aryl diamine derivatives were prepared in moderate to high yields with high anti/syn diastereoselectivity.
View Article and Find Full Text PDF