Long‑term peritoneal dialysis is often limited or interrupted due to the development and progression of peritoneal fibrosis. Accumulating evidence suggests that epithelial‑mesenchymal transition (EMT) is a major component of peritoneal injury associated with peritoneal fibrosis in the end stage of renal disease; however, at present, the underlying mechanisms remain unclear. Thus, in the present study, uric acid (UA)‑induced EMT of peritoneal mesothelial cells was investigated by western‑blot and immunofluorescence staining.
View Article and Find Full Text PDFObjective: This study aimed to investigate the differences and inhibitory effects of diethyl citrate (Et2Cit), sodium citrate (Na3Cit), and phosphonoformic acid (PFA) on calcification induced by high inorganic phosphate (Pi) contents in mouse aortic smooth muscle cells (MOVAS) and to develop drugs that can induce anticoagulation and inhibit vascular calcification (VC).
Methods: Alive and fixed MOVAS were assessed for 14 days in the presence of high Pi with increasing Et2Cit, Na3Cit, and PFA concentrations. Calcification on MOVAS was measured through Alizarin red staining and the deposited calcium amount; apoptosis was detected by annexin V staining; and cell transdifferentiation was examined by measuring smooth muscle lineage gene (α-SMA) expression and alkaline phosphatase activity.
The property changes of urinary nanocrystallites in 13 patients with calcium oxalate (CaOx) stones were studied before and after ingestion of potassium citrate (K3cit), a therapeutic drug for stones. The analytical techniques included nanoparticle size analysis, transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The studied properties included the components, morphologies, zeta potentials, particle size distributions, light intensity autocorrelation curves, and polydispersity indices (PDIs) of the nanocrystallites.
View Article and Find Full Text PDF