Nonsurgical treatment and surgical repairment of injured Achilles tendons seldom restore the wounded tendon to its original elasticity and stiffness. Therefore, we hypothesized that the surgically repaired Achilles tendon can achieve satisfactory regeneration by applying multi-drug encapsulated hydrogels. In this study, a novel bupivacaine-eluting carbon dioxide-encapsulated Pluronic F127 hydrogel (BC-hydrogel) was developed for the treatment of Achilles tendon injuries.
View Article and Find Full Text PDFThe treatment and surgical repair of torn Achilles tendons seldom return the wounded tendon to its original elasticity and stiffness. This study explored the in vitro and in vivo simultaneous release of indomethacin and bupivacaine from electrospun polylactide-polyglycolide composite membranes for their capacity to repair torn Achilles tendons. These membranes were fabricated by mixing polylactide-polyglycolide/indomethacin, polylactide-polyglycolide/collagen, and polylactide-polyglycolide/bupivacaine with 1,1,1,3,3,3-hexafluoro-2-propanol into sandwich-structured composites.
View Article and Find Full Text PDFOne of the main challenges in co-injection molding is how to predict the skin to core morphology accurately and then manage it properly, especially after skin material has been broken through. In this study, the formation of the Core-Skin-Core (CSC) structure and its physical mechanism in a two-stage co-injection molding has been studied based on the ASTM D638 TYPE V system by using both numerical simulation and experimental observation. Results showed that when the skin to core ratio is selected properly (say 30/70), the CSC structure can be observed clearly at central location for 30SFPP/30SFPP system.
View Article and Find Full Text PDFIn this study, the assembly behavior for two injected components made by a family mold system were investigated. Specifically, a feasible method was proposed to evaluate the characteristic length of two components within a family mold system using numerical simulation and experimental validation. Results show that as the packing pressure increases, the product index (characteristic length) becomes worse.
View Article and Find Full Text PDFGlass or carbon fibers have been verified that can enhance the mechanical properties of the polymeric composite injection molding parts due to their orientation distribution. However, the interaction between flow and fiber is still not fully understood yet, especially for the flow-fiber coupling effect. In this study, we have tried to investigate the flow-fiber coupling effect on fiber reinforced plastics (FRP) injection parts utilizing a more complicated geometry system with three ASTM D638 specimens.
View Article and Find Full Text PDFIn recent years, due to the rapid development of industrial lightweight technology, composite materials based on fiber reinforced plastics (FRP) have been widely used in the industry. However, the environmental impact of the FRPs is higher each year. To overcome this impact, co-injection molding could be one of the good solutions.
View Article and Find Full Text PDFCompression molding is a lightweight technology that allows to preserve fiber length and retain better mechanical properties compared to injection molding. In compression molding development, a suitable material such as glass fiber mat thermoplastics (GMT) is often used. However, because of the complicated micro-structure of the fibers and the fiber⁻resin matrix interactions, it is still quite challenging to understand the mechanism of compression molding and it is very difficult to obtain a uniformly compressed GMT product.
View Article and Find Full Text PDF