Constructing solid-state lithium-oxygen batteries (SSLOBs) holds a great promise to solve the safety and stability bottlenecks faced by lithium-oxygen batteries (LOBs) with volatile and flammable organic liquid electrolytes. However, the realization of high-performance SSLOBs is full of challenges due to the poor ionic conductivity of solid electrolytes, large interfacial resistance, and limited reaction sites of cathodes. Here, a flexible integrated cathode-electrolyte structure (ICES) is designed to enable the tight connection between the cathode and electrolyte through supporting them on a 3D SiO nanofibers (NFs) framework.
View Article and Find Full Text PDFThe lithium-oxygen battery (LOB) with a high theoretical energy density (∼3500 Wh kg) has been regarded as a strong competitor for next-generation energy storage systems. However, its performance is still far from satisfactory due to the lack of stable electrolyte that can simultaneously withstand the strong oxidizing environment during battery operation, evaporation by the semiopen feature, and high reactivity of lithium metal anode. Here, we have developed a deep eutectic electrolyte (DEE) that can fulfill all the requirements to enable the long-term operation of LOBs by just simply mixing solid -methylacetamide (NMA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) at a certain ratio.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2022
The severe performance degradation of high-capacity Li-O batteries induced by Li dendrite growth and concentration polarization from the low Li transfer number of conventional electrolytes hinder their practical applications. Herein, lithiated Nafion (LN) with the sulfonic group immobilized on the perfluorinated backbone has been designed as a soluble lithium salt for preparing a less flammable polyelectrolyte solution, which not only simultaneously achieves a high Li transfer number (0.84) and conductivity (2.
View Article and Find Full Text PDF