The design of positively charged ultrathin films for surface modification is of crucial importance for biomedical applications. Herein, we report the layer-by-layer assembly of pure positively charged ultrathin films based on the host-guest interaction of cucurbit[8]uril (CB[8]). Two positively charged poly(ethylenimine)s (PEI) functionalized with guest moieties methyl viologen (MV) and indole (ID) were alternately assembled with the formation of CB[8] ternary complex under basic conditions.
View Article and Find Full Text PDFFor polymersomes to achieve their potential as effective delivery vehicles, they must efficiently encapsulate therapeutic agents into either the aqueous interior or the hydrophobic membrane. In this study, cell membrane-mimetic polymersomes were prepared from amphiphilic poly(D,L-lactide)-b-poly(2-methacryloyloxyethylphosphorylcholine) (PLA-b-PMPC) diblock copolymers and were used as encapsulation devices for water-soluble molecules. Thioalkylated zwitterionic phosphorylcholine protected quantum dots (PC@QDs) were chosen as hydrophilic model substrates and successfully encapsulated into the aqueous polymersome interior, as evidenced by transmission electron microscopy (TEM) and flow cytometry.
View Article and Find Full Text PDFA novel comb-like derivative CPEG-g-DNQ was prepared by incorporating light responsive 2-diazo-1,2-naphthoquinone (DNQ) groups into the structure of comb-like poly(ethylene glycol) (CPEG). DLS and TEM results showed that CPEG-g-DNQ self-assembled into spherical micelles with an average size of about 135 nm in water. Upon exposure to light, the micelles could be disrupted because of the conversion of hydrophobic DNQ to hydrophilic 3-indenecarboylic acid.
View Article and Find Full Text PDF