Publications by authors named "Chao-Hai Du"

Chiral light emission plays a key role in sensing, tomography, quantum communication, among others. Whereas, achieving highly pure, tunable chirality emission across a broad spectrum currently presents significant challenges. Free-electron radiation emerges as a promising solution to surpass these barriers, especially in hard-to-reach regimes.

View Article and Find Full Text PDF

Metasurfaces have recently experienced revolutionary progress in sensing and super-resolution imaging fields, mainly due to their manipulation of electromagnetic waves on subwavelength scales. However, on the one hand, the addition of metasurfaces can multiply the complexity of retrieving target information from detected electromagnetic fields. On the other hand, many existing studies utilize deep learning methods to provide compelling tools for electromagnetic problems but mainly concentrate on resolving one single function, limiting their versatilities.

View Article and Find Full Text PDF

Surface waves (SWs) are of great importance in terahertz (THz) photonics applications due to their subwavelength properties. Hence, it is crucial to develop surface wavefront shaping techniques, which is urgent in modern information technologies. In this paper, a new scheme is proposed to realize SW excitation and spin-decoupled wavefront shaping with an ultracompact planar meta-device working in the THz range.

View Article and Find Full Text PDF

The vortex beam provides a promising alternative for next-generation wireless communication, but it is a long-standing challenge to generate a multi-mode and robust vortex beam. In this Letter, a multi-mode vortex beam emitter is introduced and experimentally verified based on spoof surface plasmon polaritons (SSPP). The SSPP on a helical grating carries multi-mode orbital angular momentum and can be converted into a high-purity vortex beam via the diffraction of a ring array.

View Article and Find Full Text PDF

Inspired by the capability of structured illumination microscopy (SIM) in subwavelength imaging, many researchers devoted themselves to investigating this methodology. However, due to the free-propagating feature of the traditional structured illumination fields, the resolution can be only improved up to two-fold of the diffraction-limited microscopy. Besides, most of the previous studies, relying on incoherent illumination sources, are restricted to fluorescent samples.

View Article and Find Full Text PDF

Recently, ultrathin localized spoof surface plasmon (LSSP) resonators are found to have intrinsic defects of relatively low quality factors (Q-factors) because of unavoidable material and radiation losses. In this paper, multilayer structures of planar-circular-grating resonators and their magnetic-coupling schemes are proposed to achieve effective excitation of high-Q LSSPs modes. By adopting the multilayer structures with air between the layers, the power dissipation effected by both material and radiation losses is significantly suppressed.

View Article and Find Full Text PDF

A broadband vortex beam generator provides a promising solution for various applications. Since the space-charge wave of the free-electron bunch inherently covers a wide frequency range, the free-electron-driven devices can be utilized to generate broadband radiation. This work presents a wideband tunable multi-mode vortex beam generator based on the Smith-Purcell radiation (SPR) from a helical grating.

View Article and Find Full Text PDF

A beam-scanning terahertz (THz) radiation mechanism in a free-electron-driven grating system is proposed for THz applications. By loading a period-asynchronous rod array above the grating, the spoof surface plasmon (SSP) originally excited by the electron changes its radiation characteristics owing to the rod-induced Brillouin zone folding effect. The rod array functions as an antenna and converts the SSP into a spatial coherent THz radiation.

View Article and Find Full Text PDF

Terahertz applications urgently require high performance and room temperature terahertz sources. The gyrotron based on the principle of electron cyclotron maser is able to generate watt-to-megawatt level terahertz radiation, and becomes an exceptional role in the frontiers of energy, security and biomedicine. However, in normal conditions, a terahertz gyrotron could generate terahertz radiation with high efficiency on a single frequency or with low efficiency in a relatively narrow tuning band.

View Article and Find Full Text PDF

The coupling between surface plasmons and free electrons may be used to amplify waves or accelerate particles. Nonetheless, such an interaction is usually weak due to the small interaction length or velocity mismatching. Here a mechanism for enhancing the coupling between plasmonic fields and relativistic electrons is proposed.

View Article and Find Full Text PDF